a2 United States Patent

Colgrove et al.

US009069786B2

US 9,069,786 B2
*Jun. 30, 2015

(10) Patent No.:
(45) Date of Patent:

(54) METHOD FOR MAINTAINING MULTIPLE
FINGERPRINT TABLES IN A
DEDUPLICATING STORAGE SYSTEM

(71) Applicant: PURE Storage, Inc., Mountain View,

CA (US)

(72) Inventors: John Colgrove, Los Altos, CA (US);

John Hayes, Mountain View, CA (US);

Ethan Miller, Santa Cruz, CA (US);

Joseph S. Hasbani, Palo Alto, CA (US);

Cary Sandvig, Palo Alto, CA (US)

(73)

Assignee: Pure Storage, Inc., Mountain View, CA

(US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 58 days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 14/083,152

Filed: Nov. 18, 2013

(65) Prior Publication Data

US 2014/0074804 A1 Mar. 13, 2014

Related U.S. Application Data

Continuation of application No. 13/273,858, filed on
Oct. 14, 2011, now Pat. No. 8,589,640.

(63)

Int. Cl1.
GO6F 17/30
GO6F 3/06
U.S. CL
CPC GO6F 17/30156 (2013.01); GOG6F 17/30159
(2013.01); GOGF 3/0608 (2013.01); GO6F
3/0641 (2013.01); GO6F 3/0689 (2013.01)

(51)
(2006.01)
(2006.01)

(52)

Netwaork Architecture 100 -—\

Client Camputer
System 110b

Network
180

Client Computer
System 110a

(58) Field of Classification Search

CPC oo, GOGF 17/30156; GOGF 17/30159;
GOGF 3/0608; GOGF 3/0641; GOGF 3/0689
USPC 707/692, 650, 802; 711/112, 162, 156

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,561,421 A 10/1996 Smith et al.
5,990,810 A 11/1999 Williams
(Continued)
OTHER PUBLICATIONS

U.S. Appl. No. 11/641,389, filed Dec. 18, 2006 entitled “Single
Instance Storage”.

(Continued)

Primary Examiner — Reginald Bragdon
Assistant Examiner — Mehdi Namazi

(57) ABSTRACT

A system and method for managing multiple fingerprint
tables in a deduplicating storage system. A computer system
includes a data storage medium, a first fingerprint table com-
prising a first plurality of entries, and a second fingerprint
table comprising a second plurality of entries. Each of the first
plurality of entries and each of the second plurality of entries
are configured to store fingerprint related data corresponding
to data stored in the data storage medium. A data storage
controller is configured to select the first fingerprint table for
storage of entries corresponding to data stored in the data
storage medium that has been deemed more likely to be
successfully deduplicated than other data stored in the data
storage medium; and select the second fingerprint table for
storage of entries corresponding to data stored in the data
storage medium that has been deemed less likely to be suc-
cessfully deduplicated than other data stored in the data stor-
age medium.

20 Claims, 14 Drawing Sheets

Internet 160

Client Computer
System 110

Switch 150

Dala
Storage
Array

1208

=N

Mema Storage Subsystem 170
Medium
Bass 05 132 Storage Controller 174
Rﬁgl Deduplicati
eduplication
T
Processor 122 Storags Storage Storage)
De7vlce Device Device %!V\ce
1782 1780 176m roup
1z3m
Network
Interface Device Group 1732
124

US 9,069,786 B2
Page 2

(56)

6,009,442
6,014,676
6,141,784
6,389,433
6,513,051
6,865,655
6,920,537
6,983,365
7,055,008
7,136,976
7,146,429
7,200,604
7,213,158
7,257,104
7,257,643
7,310,644
7,318,072
7,359,920
7,389,394
7,401,194
7,409,523
7424514
7,454,592
7,478,113
7,519,635
7,565,423
7,685,459
7,689,764
7,765,191
7,818,495
7,870,105
8,065,275
8,078,646
8,166,012
8,311,964
8,396,841
8,589,640
2001/0045962
2002/0107877
2004/0044707
2004/0143731
2005/0027766
2005/0198328
2005/0204108

References Cited

U.S. PATENT DOCUMENTS

A

A

A

Bl
Bl
Bl
B2
Bl
B2
B2
B2
B2
B2
B2
B2
B2
B2
Bl
Bl
B2
B2
B2
Bl
Bl
Bl
Bl
Bl
Bl
B2
B2
B2
B2
B2
B2
Bl
Bl
B2
Al
Al
Al
Al
Al
Al
Al

12/1999
1/2000
10/2000
5/2002
1/2003
3/2005
7/2005
1/2006
5/2006
11/2006
12/2006
4/2007
5/2007
8/2007
8/2007
12/2007
1/2008
4/2008
6/2008
7/2008
8/2008
9/2008
11/2008
1/2009
4/2009
7/2009
3/2010
3/2010
7/2010
10/2010
1/2011
11/2011
12/2011
4/2012
11/2012
3/2013
11/2013
11/2001
8/2002
3/2004
7/2004
2/2005
9/2005
9/2005

Chen et al.
McClain

Davis et al.
Bolosky et al.
Bolosky et al.
Andersen

Ofek et al.
Douceur et al.
Niles et al.
Saika

Michel

Forman et al.
Bantz et al.
Shitama
Mathew et al.
Adya et al.
Margolus et al.
Rybicki et al.
Karr et al.
Jewell
Pudipeddi et al.
Noble et al.
Shah et al.

De Spiegeleer et al.
Haustein et al.
Fredricksen

De Spiegeleer et al.
De Spiegeleer et al.
Armangau et al.
Tanaka et al.
Arakawa et al.
Eriksen et al.
Das et al.
Reddy et al.
Efstathopoulos et al.
Janakiraman
Colgrove et al.
Lee et al.
Whiting et al.
Richard
Audebert et al.
Ben et al.

Lee et al.

Ofek et al.

2005/0216813 Al
2006/0026219 Al
2007/0198659 Al
2007/0250674 Al
2008/0005141 Al
2008/0133561 Al
2008/0154989 Al
2008/0243769 Al
2008/0243953 Al
2008/0244204 Al
2010/0125605 Al
2010/0257403 Al
2010/0274982 Al
2011/0173397 Al
2011/0202722 Al
2011/0227790 Al
2011/0238634 Al
2011/0276744 Al
2011/0276780 Al
2012/0017054 Al
2012/0072396 Al
2012/0078858 Al

9/2005 Cutts et al.
2/2006 Orenstein et al.
8/2007 Lam
10/2007 Fineberg et al.
1/2008 Zheng et al.
6/2008 Dubnicki et al.
6/2008 Arman
10/2008 Arbour et al.
10/2008 Wu et al.
10/2008 Cremelie et al.
5/2010 Nair et al.
10/2010 Virk et al.
10/2010 Mehr et al.
7/2011 Boyle et al.
8/2011 Satran et al.
9/2011 Lietal.
9/2011 Kobara
112011 Sengupta et al.
112011 Sengupta et al.
1/2012 Arai et al.
3/2012 Mu
3/2012 Nagpal et al.
2012/0151169 Al 6/2012 Mori et al.
2013/0086006 Al 4/2013 Colgrove et al.

OTHER PUBLICATIONS

Zhu, Benjamin, et al., “Avoiding the Disk Bottleneck in the Data
Domain Deduplication File System”, Feb. 2008, USENIX, pp. 269-
282.

Biplob Debnath, Sudipta Sengupta, Jin Li “ChunkStash: Speeding up
Inline Storage Deduplication using Flash Memory”, Proceedings of
the 2010 USENIX Annual Technical Conference, Jun. 23, 2010
retrieved from research microsoft.com/pubs/132038/paper.pdf on
Jan. 14, 2013, pp. 1-16.

International Search Report and Written Opinion in application No.
PCT/US2012/060228 mailed Jan. 21, 2013 pp. 1-10.

International Search Report and Written Opinion in Application No.
PCT/US2012/057515 mailed Jan. 4, 2013 pp. 1-10.

Biplob Debnath, Sudipta Sengupta, Jin Li, David J Lilja, and David
H.C. Du “BloomFlash: Bloom Filter on Flash-based Storage” 2011
31st International Conference on Distributed Computing Systems.
Jun. 20, 2011, pp. 635-644.

Daniel J. Abadi, Samuel R. Madden, Miguel C. Ferreira “Integrating
Compression and Execution in Column-Oriented Database Systems”
ACM Proceedings of Sigmod, International Conference on Manage-
ment of Data. Jun. 27, 2006. 12 pages.

US 9,069,786 B2

Sheet 1 of 14

Jun. 30, 2015

U.S. Patent

43
B/} dnolo aoineq 2088
Yloman
we/l .
dnoig wg/l 9o/l B9/T
aoneq 2012 .- 20IA9(] aoIne(]
obelioig abeloig abeloyg Ze1 105599044
AR e1 Jobeuep Aeity
uonesidnpaci Tir
NV
FZT Jollonue] sbeiolg CEl SO ssey
_ 0F} wnipe
0Z1 walsAsgng abeloig Aouwiapy W

/ 051 youms

/
_ 061
SHlomjeN

\
/ —_—

\ 097 1ewely

01T WalsAg
Jandwiod sy

NIINEN|

qozl
Relry

sbeloig
gjeq

epel
Aeary

obelolg
ejeq

osl

GOL} Walehs
Jindwen sy

B0L | WasAs
sinduwion usin

VK\\‘ Q01 9in108}Iyaly HIOMIBN

U.S. Patent Jun. 30, 2015 Sheet 2 of 14 US 9,069,786 B2

Receive Data for Deduplication
202

Y
Generate fingerprint
204

y
Identify fingerprint tables to
search
208

v

Select table
208

Write Data
224

More Tables?
222

|

Search
current table?
210

No

Y

No

Y

Y
Create new
deduplication Entry
226

Read No
Stored Data?

214

Yes i

No

Data Match?
216

4

Update Link Table Update Mapping Table
218 220

Py

FIG. 2

U.S. Patent Jun. 30, 2015

Sheet 3 of 14

i Select one or more storage devices
to use in a storage subsystem.
402

|dentify for any given data component
one or more attributes to maintain

404

i \

ldentify events for updating the one or
more attributes.

| 406

401

US 9,069,786 B2

r— Method 400

Determine
one of the events has
occurred?
408

Yes

Y

Retrieve corresponding attributes.
410

l

Make change to fingerprint location
as indicated

412

No———————

Y

Update the attributes.
414

FIG. 3

US 9,069,786 B2

Sheet 4 of 14

Jun. 30, 2015

U.S. Patent

MEOS rcog 1£08 He0S 9¢04

shjelg siol [e1o) | a1ey Jousg suoljes|idnpaq (101 ajey uoneodnpag

4€0S 406 acos 0¢e0s 05 Ve0s
aby eoine(q | ezig Bleg | ebyele(| SOSSeDOVy [Bl0] | 9)8y $Seldy ssalppy

00G songny ——

T0G Aug ssinquily

/

US 9,069,786 B2

Sheet 5 of 14

Jun. 30, 2015

U.S. Patent

1299 Ayug

a¥8 8|qe L
SRy

899
1507

aiepdn aiqey buiddey

o_mo._ ayepdn seinqupy

899
oo

JUsWaAo seuuT ajgel

99

Mm,@
21607

ABajenguoliealjdnpagq

S
gg o1boT (onuog

089
gbelgyg

G Old

Uces ?cwnl’

009 waishg ——

\V —
gégg Anug -
BZEo \Ecm
00 odel -
alnguRy
-
aiqe] Buiddepy
?:m)
018
- Xapu|
[BNuIA
— M
6¢o dzed A |
Xapu] |-
leaishug 8225 Anu3
/ ured pesy
T 4] $29
L osne1s Xxopuy| Xapu|

_mo_m>:n_ 1entia

049
sindu]

»sn

\ ERESTINY

e

300
JBquInN
10)09g

909
al
1oysdeug
708
$S3IPPY
[BNHIA
709

al
AWNJOA

U.S. Patent

Data
Component
502

Yy

' Fingerprint
Algorithm
504

A4

Data
Component
Fingerprint

506

Jun. 30, 2015 Sheet 6 of 14 US 9,069,786 B2
Deduplication Table 510
Fingerprint |
_ 922a | Fingerprint
Fingerprint Table
522b 520
i Fingerprint
5229 Fingerprint
— Tahle
530
Fingerprint | Fingerprint ‘
: £33 534 Painter 536a Status 538a
Fingerprint Fingerprint . .
530b | £34h Pointer 536p | Status 538b |
Fingerprint | Fingerprint . . .
. 532] 534 Pointer 538] Status 538]
] Fingerprint
Table
/ 540
Fingerprint | Fingerprint | Fingerprint .
5423 5443 5454 Pointer 548a Status 548a
Fingerprint Fingerprint Fingerprint .
£49b 544p 5450 Pointer 546b Status £48b
Fingerprint | Fingerprint | Fingerprint | _ .
542m 544 \ 545m ‘ Pointer 546m Status 548m

US 9,069,786 B2

Sheet 7 of 14

Jun. 30, 2015

U.S. Patent

(lBod) IH 188 65 Aoy
M W W . R n‘ :o: - T - s
; P i ! sBulddeyy
> “““““““““““““““““““““““““ e ; ! 10 ebed
sBuiddepy U05S , v - B - : ST
Jo ebey sBuiddepy sBuiddey . BUSS .
jo abed 10 aBe 1055 sbuddewy ©
sBuiddepy jo ebeq
10 obe el | - - - [ope | 61 | e
abs '
sBuiddey -
. 10 affied ; .
: . NPlRId | - - - jopRid | g | 4L
W . q05% NP4 | - - - jopeId| 8 | ¥l
. sbudden 74 | npig [- - - | opieid | ee | 2L
ﬁ 10 abey 1S
o NPl | - - opeid] g | 2l
N, w kv : : 0, ”
sBuiddepy W05S | sBuiddey %\ sBuiddeypy .
0 abed sBuddepy jo ebey sBuidde 10 efeyd N .
10 aBeg jo abed NPBRI4A| - - - 1 OpPPI4| 6 A
| e : eIy NPRId| - - - opleid] #L | o
w | | sburddeiy NPl | - - Toppid] 8 | o
m b i joobed | ‘ o
b P oo aHy 4oss e
sbuiddepy 5 Qv_o_omm sbuiddepy sBuiddey -
J0 abeq SBuIcCen 10 abed pobeq | N, 18/
1o sbed 2. PR —
«bw [PAST]
0¢6 @lge] wudiabury

US 9,069,786 B2

Sheet 8 of 14

Jun. 30, 2015

U.S. Patent

L2, fey
<L 19091 oo snjels pgl 8. 89| 1z !
«56, Sued uonied . —
Ty 19AD7 snes €L 0g" " ¢ Le i
ZET, 9bed snjelg AN} e o 14
- s/ | sems . o0 1z | |
uoned ” —
a1bo sblay o N B B 90¢S
- juudiebuly
0, L2, 883 | Jusuodwon
uonled i 2
ol 0, snyejs Ll 8, 19| ¢ | | =a
uoniued | - | U
snjelg 9¢ ¥5 8¢ (44 i
smeis zeT le "9L| ez
BZ0G sniels L [4 cc 705
uoiued obed obuey Aoy wuHobiy
,,,,,,,, R : wundisBulg
09% 1
xapu| — |
<05 :
Alepuodag usuoduon |
ejeq ,

US 9,069,786 B2

Sheet 9 of 14

Jun. 30, 2015

U.S. Patent

(FTE6Z6GIX Jomiod 1oBie] 1 2z, Aoyl IH -

6 Old

o
I
o
£
a.
o)
@
=

jo sbed

L+
sbuiddep
10 afiey

j0 afied

106G

286G Xapu|
Alepuoges

J0 sbey

LH.
i sbuiddep
i joebed

.H. sbuiddep
10 afeq

9069
Xapuj Alewid

Jo abed

wb 3w

1o abed

10 ebed

LT, A

.8, [9R87]
*.2€, sBuiddeyy jo ebey

Jo abey

J0 abey

Jjo abey

IV

by DA

«G"N, 1PN

«bN, [PAST

«Na [8AST]

0¢G a1gqe L wudisbury

A!;T
SSIN
AS)uH

T
089
o160

omhm_z\

07§
sa1doD xepu|

L2, A

80¢%
wdisbuiy

08
Wwiobly
Judiabul

a

<05
Wwauodwon

eeq

U.S. Patent

/
Determine to use N fingerprint

tables for deduplication
602

l

Jun. 30, 2015

Identify one or more events for
changing a storage strategy for
table entries
606

l

Identify one or more attributes to
store and maintain for entries
608

Sheet 10 of 14

rw~ Method 600

Register, move, promote,
demote, evict, and/or reinsert
entries based on corresponding
attributes
618

»-t——No

Update attributes as the stored
data components are aged and
accessed
610

Does
one of the
events occur?
612

Yes

v

FIG. 10

Inspect attributes of one or more
entries within the tables
614

US 9,069,786 B2

U.S. Patent

Jun. 30, 2015 Sheet 11 of 14

/— Method 800

-
Identify one or more conditions for
evicting an entry from a deduplication
table
802

Are

conditions satisfied for

evicting entry?
804

Yes

'

Mark corresponding data
component as having been
removed.

806

Y

Remove the given entry from the

A

table
808

FIG. 11

US 9,069,786 B2

U.S. Patent Jun. 30, 2015 Sheet 12 of 14 US 9,069,786 B2

/— Method 900

ldentify one or more conditions for
reviewing data for possible
inclusion In the deduplication '

table (DT).
902

/

Are
conditions
satisfied?
904

No—p!

Yes

Y

Inspect corresponding attributes
906

Y

Does
the data qualify to be
in the DT?
908

Yes

v

Insert the given entry into the table
210

FIG. 12

US 9,069,786 B2

Sheet 13 of 14

Jun. 30, 2015

U.S. Patent

00z} woishg —~

905
wdiebui4

L Ol
geer | Toger BOzel | veal IES
smels | xepuj | - - . | xepul | xapul B xapuj
[enuIn [endiA | [edisAug esishd
A
076 siqel. juudiebuly
bozzl Anug
J
‘ ~ 0%G siqey yuudiebuiy
gozel Az
| BOZZ I Aug 026 o|ge] 1undiabuly
121 sjqel jur] OIS 8|qe | uopesidnpaqg

_ wauodwion

. eleq
L

¥0S
WyLoBly |
jundiafbuly “

A

205
jusuodwoy

geq

U.S. Patent

Jun. 30, 2015

Read Link Table entry
1402

Sheet 14 of 14

Y

Read virtual address
from entry
1404

A J

Look up virtual address
in mapping table
1408

Virtual
address valid?

1408

Y

Yes

ore

entries in
table?
1418

US 9,069,786 B2

g Done)

addresses
1412

Reclaim data block
1416

Write new entry to
link tabte
1420

Update new
link table entry
1410

FIG. 14

Yes

New
entry empty
1414

|

US 9,069,786 B2

1
METHOD FOR MAINTAINING MULTIPLE
FINGERPRINT TABLES IN A
DEDUPLICATING STORAGE SYSTEM

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/273,858, entitled “METHOD FOR MAIN-
TAINING MULTIPLE FINGERPRINT TABLES IN A
DEDUPLICATING STORAGE SYSTEM?”, filed Oct. 14,
2011, the entirety of which is incorporated herein by refer-
ence.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to computer network attached stor-
age systems, and, more particularly, to efficiently removing
duplicate data blocks at a fine-granularity from a storage
array.

2. Description of the Related Art

As computer memory storage and data bandwidth
increase, so does the amount and complexity of data that
businesses manage. Large-scale distributed storage systems,
such as data centers, typically run many business operations.
Computer systems that include multiple clients intercon-
nected by a network increasingly share a distributed storage
system. If the distributed storage system has poor perfor-
mance or becomes unavailable, company operations may be
impaired or stopped completely. Such distributed storage sys-
tems seek to maintain high standards for data availability and
high-performance functionality. As used herein, storage disks
may be referred to as storage devices as some types of storage
technologies do not include disks.

Shared storage typically holds a large amount of data,
which may include a substantial quantity of duplicate data.
This duplicate data may result from an accidental process
such as independent end-users copying the same data. In
addition, a deliberate process such as creating a backup or
replicating data may cause the duplicate data. In other cases,
duplicate data is simply incidental, such as when a shared
storage system holds multiple virtual machine files, all of
which are derived from a common template. Whatever the
cause, removing duplicate data, and therefore reducing the
amount of storage utilized and reducing data transferred dur-
ing backups and other data transfer activities, may increase
performance. Additionally, reducing the amount of redundant
data stored may improve storage efficiency and may reduce
overall costs. Further, improved efficiencies may in turn
enable the use of more expensive storage technologies, which
may provide improved performance.

One example of a relatively cheap storage technology is the
hard disk drive (HDD). HDDs generally comprise one or
more rotating disks, each coated with a magnetic medium.
These disks typically rotate at a rate of several thousand
rotations per minute. In addition, a magnetic actuator is
responsible for positioning magnetic read/write devices over
the rotating disks. On the other hand, an example of a rela-
tively expensive storage technology is Solid State Storage or
a Solid-State Disk (SSD). A Solid-State Disk may also be
referred to as a Solid-State Drive. SSDs may emulate an HDD
interface, but utilize solid-state memory to store persistent
data rather than electromechanical devices such as those
foundina HDD. For example, an SSD may use Flash memory
to store data. Without moving parts or mechanical delays,
such an SSD may have lower read access latencies than hard
disk drives. In some cases, write latencies for a solid state
devices may be much greater than read latencies for the same
device. No matter what technology is used for storage, dedu-

10

15

20

25

30

35

40

45

50

55

60

65

2

plication is often desired to improve storage efficiency. In
many storage systems, software applications such as a logical
volume manager or a disk array manager are used to allocate
space on mass-storage arrays. However, these applications
generally operate and provide mappings at a relatively coarse
level of granularity. Consequently, locating and removing
duplicate data may be limited to relatively large chunks of
data, which in turn may lead to inefficient deduplication.
Additionally, while deduplication can improve storage effi-
ciency, deduplication can also slow down certain storage
related operations—such as write requests. The results of
deduplication may also cause storage-related operations such
as reads to run more slowly. Consequently, when and how
deduplication is performed is important as well.

In view of the above, systems and methods for efficiently
removing duplicate data blocks at a fine-granularity from a
storage array and subsequently accessing them efficiently are
desired.

SUMMARY OF THE INVENTION

Various embodiments of a computer system and methods
for efficiently managing duplication of data in a storage array
are disclosed.

In one embodiment, a system and method for managing
multiple fingerprint tables in a deduplicating storage system
are contemplated. The computer system includes a data stor-
age medium configured to store data. The system further
includes at least a first fingerprint table including multiple
entries, and a second fingerprint table including multiple
entries. Each of the entries in the fingerprint tables is config-
ured to store fingerprint related data corresponding to data
stored that is stored in the data storage medium. A data storage
controller is configured to generally maintain the first finger-
print table for storage of entries that correspond to data in the
data storage medium that has been deemed more likely to be
successfully deduplicated than other data stored in the data
storage medium, and to generally maintain the second finger-
print table for storage of entries corresponding to data that has
been deemed less likely to be successfully deduplicated than
other data stored in the data storage medium. In various
embodiments, a given strategy for searching the multiple
fingerprint tables during a deduplication operation may be
employed. For example, in various embodiments a search of
the first fingerprint table is performed responsive to a received
write request. In response to a miss on the first fingerprint
table, further searching of the fingerprint tables may be
deferred to a later time. In such a case, the write data is stored
in the data storage medium.

These and other embodiments will become apparent upon
consideration of the following description and accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a generalized block diagram illustrating one
embodiment of network architecture.

FIG. 2 illustrates one embodiment of a method for per-
forming deduplication.

FIG. 3 illustrates one embodiment of a method for main-
taining fingerprints in a deduplication table.

FIG. 4 is a generalized block diagram illustrating one
embodiment of a table entry storing attributes.

FIG. 5 is a generalized block diagram illustrating one
embodiment of a system for maintaining attributes tables for
data components.

US 9,069,786 B2

3

FIG. 6 is a generalized block diagram illustrating one
embodiment of a deduplication table.

FIG. 7 is a generalized block diagram illustrating another
embodiment of a deduplication table.

FIG. 8 is a generalized block diagram illustrating one
embodiment of a secondary index used to access a dedupli-
cation table.

FIG. 9 is a generalized block diagram illustrating one
embodiment of a secondary index used to access a dedupli-
cation table.

FIG. 10 is a generalized flow diagram illustrating one
embodiment of a method for supporting multiple deduplica-
tion fingerprint tables.

FIG. 11 is a generalized flow diagram illustrating one
embodiment of a method for removing entries from a dedu-
plication table.

FIG. 12 is a generalized flow diagram illustrating one
embodiment of a method for reinserting evicted entries into a
deduplication table.

FIG. 13 is a generalized block diagram illustrating an
embodiment of a system for maintaining reverse address
mappings.

FIG. 14 illustrates one embodiment of a method for per-
forming garbage collection.

While the invention is susceptible to various modifications
and alternative forms, specific embodiments are shown by
way of example in the drawings and are herein described in
detail. It should be understood, however, that drawings and
detailed description thereto are not intended to limit the
invention to the particular form disclosed, but on the contrary,
the invention is to cover all modifications, equivalents and
alternatives falling within the spirit and scope of the present
invention as defined by the appended claims.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a thorough understanding of the present
invention. However, one having ordinary skill in the art
should recognize that the invention might be practiced with-
out these specific details. In some instances, well-known
circuits, structures, signals, computer program instruction,
and techniques have not been shown in detail to avoid obscur-
ing the present invention.

Referring to FIG. 1, a generalized block diagram of one
embodiment of a network architecture 100 is shown. As
described further below, one embodiment of network archi-
tecture 100 includes client computer systems 110a-1105
interconnected to one another through a network 180 and to
data storage arrays 120a-1205. Network 180 may be coupled
to a second network 190 through a switch 140. Client com-
puter system 110c¢ is coupled to client computer systems
110a-1105 and data storage arrays 120a-1205 via network
190. In addition, network 190 may be coupled to the Internet
160 or other outside network through switch 150.

Itis noted that in alternative embodiments, the number and
type of client computers and servers, switches, networks, data
storage arrays, and data storage devices is not limited to those
shown in FIG. 1. At various times one or more clients may
operate offline. In addition, during operation, individual cli-
ent computer connection types may change as users connect,
disconnect, and reconnect to network architecture 100. Fur-
ther, while the present description generally discusses net-
work attached storage, the systems and methods described
herein may also be applied to directly attached storage sys-
tems and may include a host operating system configured to

10

15

20

25

30

35

40

45

50

55

60

65

4

perform one or more aspects of the described methods.
Numerous such alternatives are possible and are contem-
plated.

Network architecture 100 includes client computer sys-
tems 110a-110c¢ interconnected through networks 180 and
190 to one another and to data storage arrays 120a-1205.
Networks 180 and 190 may include a variety of techniques
including wireless connection, direct local area network
(LAN) connections, storage area networks (SANs), wide area
network (WAN) connections such as the Internet, a router,
and others. Networks 180 and 190 may comprise one or more
L AN that may also be wireless. Networks 180 and 190 may
further include remote direct memory access (RDMA) hard-
ware and/or software, transmission control protocol/internet
protocol (TCP/IP) hardware and/or software, router, repeat-
ers, switches, grids, and/or others. Protocols such as Ethernet,
Fibre Channel, Fibre Channel over Ethernet (FCoE), iSCSI
and so forth, may be used in networks 180 and 190. Switch
140 may utilize a protocol associated with both networks 180
and 190. The network 190 may interface with a set of com-
munications protocols used for the Internet 160 such as the
Transmission Control Protocol (TCP) and the Internet Proto-
col (IP), or TCP/IP. Switch 150 may be a TCP/IP switch.

Client computer systems 110a-110¢ are representative of
any number of stationary or mobile computers such as desk-
top personal computers (PCs), workstations, laptops, hand-
held computers, servers, server farms, personal digital assis-
tants (PDAs), smart phones, and so forth. Generally speaking,
client computer systems 110a-110¢ include one or more pro-
cessors comprising one or more processor cores. Each pro-
cessor core includes circuitry for executing instructions
according to a predefined general-purpose instruction set. For
example, the x86 instruction set architecture may be selected.
Alternatively, the Alpha®, PowerPC®, SPARC®, or any
other general-purpose instruction set architecture may be
selected. The processor cores may access cache memory sub-
systems for data and computer program instructions. The
cache subsystems may be coupled to a memory (storage)
hierarchy comprising random access memory (RAM) and a
storage device.

Each processor core and memory hierarchy within a client
computer system may be in turn connected to a network
interface. In addition to hardware components, each of the
client computer systems 110a-110¢ may include a base oper-
ating system (OS) stored within the memory hierarchy. The
base OS may be representative of any of a variety of specific
operating systems, such as, for example, MS-DOS®, MS-
WINDOWS®, OS/2®, UNIX®, Linux®, Solaris® or
another known operating system. As such, the base OS may
be operable to provide various services to the end-user and
provide a software framework operable to support the execu-
tion of various programs. Additionally, each of the client
computer systems 110a-110c¢ may include a hypervisor used
to support higher-level virtual machines (VMs). As is well
known to those skilled in the art, virtualization may be used in
desktops and servers to fully or partially decouple software,
such as an OS, from a system’s hardware. Virtualization may
provide an end-user with an illusion of multiple OSes running
on a same machine each having its own resources, such logi-
cal storage entities (e.g., logical unit numbers, [LUNs) corre-
sponding to the storage devices 176a-176m within each ofthe
data storage arrays 120a-12064.

Each of the data storage arrays 120a-1205 may be used for
the sharing of data among different servers, such as the client
computer systems 110a-110c. Each of the data storage arrays
120a-1205 includes a storage subsystem 170 for data storage.
Storage subsystem 170 may comprise a plurality of storage

US 9,069,786 B2

5

devices 176a-176m. Each of these storage devices 176a-
176m may be a SSD. A controller 174 may comprise logic for
handling received read/write requests. For example, the algo-
rithms briefly described above may be executed in at least
controller 174. A random-access memory (RAM) 172 may be
used to batch operations, such as received read/write requests.

The base OS 132, a file system (not shown), an array
manager 134, any OS drivers (not shown) and other software
stored in memory medium 130 may provide functionality
enabling access to files and LUNs, and the management of
these functionalities. The software stored on memory
medium 130 may comprise program instructions executable
by processor 122. Some of these program instructions may
perform one or more memory access operations in storage
subsystem 170 that correspond to received requests. In one
embodiment, the processor 122 also executes program
instructions for the deduplication application 178.

Similar to processors within client computer systems
110a-110c¢, processor 122 may include circuitry for executing
instructions according to a predefined instruction set. For
example, the SPARC® instruction set architecture (ISA) may
be selected. Alternatively, the x86, x86-64®, Alpha®, Pow-
erPC®, MIPS®, PA-RISC®, or any other instruction set
architecture may be selected. The processor 122 may utilize
hardware design techniques such as superscalar, out-of-order
execution and register renaming. Processor 122 may com-
prise a single core or multiple cores. In one embodiment, the
processor 122 may be used in a single-processor configura-
tion. In another embodiment, the processor 122 may be used
in a multi-processor configuration.

Generally, processor 122 may access a cache memory sub-
system for data and instructions. Each core of the one or more
cores within processor 122 may contain its own level 1 (L1)
and level 2 (I.2) caches in order to reduce memory latency.
These cache memories may be integrated within the respec-
tive one or more cores. Alternatively, these cache memories
may be coupled to the respective one or more cores in a
backside cache configuration or an inline configuration, as
desired.

The L1 cache may be located nearer a respective core both
physically and within the cache memory hierarchy. In one
embodiment, logic, such as multiplexers or a switch fabric,
allows any .2 cache to access any bank of an .3 cache, and
conversely allows datato be returned from any .3 bank to any
L2 cache. Additionally, in one embodiment, this logic may be
configured to arbitrate conflicts that may occur when multiple
L2 caches attempt to access a single bank of L3 cache, or vice
versa.

In addition, the one or more cores within the processor 122
may be coupled to double data rate dual in-line memory
modules (DDR DIMM) that reside on a circuit board outside
processor 122. In one embodiment, DDR DIMM channel(s)
may be on-chip in order to couple the one or more cores
within the processor 122 to the DDR DIMM off-chip. Each
available 1.3 cache may be coupled to a memory controller or
a dynamic random access memory (DRAM) channel for
communication to DRAM that resides off-chip. Also, an
interface to a system bus may be coupled to each available [.3
cache. The cache memory subsystem(s) may be used to store
data corresponding to the above-described attributes and fin-
gerprint tables. In addition, the RAM 172 and the memory
medium 130 may be used to store this data.

Each of the data storage arrays 1204-1205 may use a net-
work interface 124 to connect to network 180. Similar to
client computer systems 110a-110c, in one embodiment, the
functionality of network interface 124 may be included on a
network adapter card. The functionality of network interface

20

30

40

45

50

6

124 may be implemented using both hardware and software.
Both a random-access memory (RAM) and a read-only
memory (ROM) may be included on a network card imple-
mentation of network interface 124. One or more application
specific integrated circuits (ASICs) may be used to provide
the functionality of network interface 124.

In the network architecture 100, each of the data storage
arrays 120a-1205 may be used for the sharing of data among
different servers and computers, such as client computer sys-
tems 110a-110c. In addition, the data storage arrays 120a-
1205 may be used for disk mirroring, backup and restore,
archival and retrieval of archived data, and data migration
from one storage device to another. In an alternate embodi-
ment, one or more client computer systems 110a-110¢ may
be linked to one another through fast local area networks
(LANSs) in order to form a cluster. Such clients may share a
storage resource, such as a cluster shared volume residing
within one of data storage arrays 120a-1204.

Each of the data storage arrays 120a-1205 includes a stor-
age subsystem 170 for data storage. Storage subsystem 170
may comprise a plurality of storage devices 176a-176m.
These storage devices 176a-176m may provide data storage
services to client computer systems 110a-110c¢. Each of the
storage devices 176a-176m uses a particular technology and
mechanism for performing data storage. The type of technol-
ogy and mechanism used within each of the storage devices
176a-176m may at least in part be used to determine the
algorithms used for controlling and scheduling read and write
operations to and from each of the storage devices 176a-
176m. The logic used in these algorithms may be included in
one or more of a base operating system (OS) 132, a file
system, one or more deduplication applications 178 within a
storage subsystem controller 174, control logic within each of
the storage devices 176a-176m, or otherwise. Additionally,
the logic, algorithms, and control mechanisms described
herein may comprise hardware and/or software.

Each of the storage devices 176a-176m may be configured
to receive read and write requests and comprise a plurality of
data storage locations, each data storage location being
addressable as rows and columns in an array. In one embodi-
ment, the data storage locations within the storage devices
176a-176m may be arranged into logical, redundant storage
containers or RAID arrays (redundant arrays of inexpensive/
independent disks). In some embodiments, each of the stor-
age devices 176a-176m may utilize technology for data stor-
age that is different from a conventional hard disk drive
(HDD). For example, one or more of the storage devices
176a-176m may include or be further coupled to storage
consisting of solid-state memory to store persistent data. In
other embodiments, one or more of the storage devices 176a-
176m may include or be further coupled to storage using other
technologies such as spin torque transfer technique, magne-
toresistive random access memory (MRAM) technique,
shingled disks, memristors, phase change memory, or other
storage technologies. These different storage techniques and
technologies may lead to differing I/O characteristics
between storage devices.

In one embodiment, the included solid-state memory com-
prises solid-state drive (SSD) technology. Typically, SSD
technology utilizes Flash memory cells. As is well known in
the art, a Flash memory cell holds a binary value based on a
range of electrons trapped and stored in a floating gate. A fully
erased Flash memory cell stores no or a minimal number of
electrons in the floating gate. A particular binary value, such
as binary 1 for single-level cell (SLC) Flash, is associated
with an erased Flash memory cell. A multi-level cell (MLC)
Flash has a binary value 11 associated with an erased Flash

US 9,069,786 B2

7

memory cell. After applying a voltage higher than a given
threshold voltage to a controlling gate within a Flash memory
cell, the Flash memory cell traps a given range of electrons in
the floating gate. Accordingly, another particular binary
value, such as binary 0 for SLC Flash, is associated with the
programmed (written) Flash memory cell. A MLC Flash cell
may have one of multiple binary values associated with the
programmed memory cell depending on the voltage applied
to the control gate.

The differences in technology and mechanisms between
HDD technology and SDD technology may lead to differ-
ences in input/output (I/O) characteristics of the data storage
devices 176a-176m. Generally speaking, SSD technologies
provide lower read access latency times than HDD technolo-
gies. However, the write performance of SSDs is generally
slower than the read performance and may be significantly
impacted by the availability of free, programmable blocks
within the SSD. As the write performance of SSDs is signifi-
cantly slower compared to the read performance of SSDs,
problems may occur with certain functions or operations
expecting latencies similar to reads. Additionally, scheduling
may be made more difficult by long write latencies that affect
read latencies. Accordingly, different algorithms may be used
for 1/0 scheduling in each of the data storage arrays 120a-
12064.

Typically, a Flash cell within an SSD is erased before it is
written with new data. An erase operation is also performed
prior to a write or program operation for a Flash memory cell.
An erase operation may also be performed on a block-wise
basis. All of the Flash memory cells within a block (e.g., an
erase segment) are erased together. A block is relatively large
and comprises multiple pages. In one example, a page is 4
kilobytes (KB) and a block comprises 64 pages, or 256 KB.
Erase operations generally have a relatively high latency.

In addition to the above, Flash cells experience wear after
repeated erase-and-program operations. The wear in this case
is due to electric charges that are injected and trapped in the
dielectric oxide layer between the substrate and the floating
gate of the MLLC Flash cell. In one example, an ML.C Flash
cell may have a limit on the number of times it can be reliably
erased and programmed, such as a range from 10,000 to
100,000 erase-program cycles. In addition, SSDs may also
experience program disturb errors where a neighboring or
nearby Flash cell experiences an state change while another
Flash cell is being erased or programmed. Further, SSDs may
experience or exhibit read disturb errors, wherein the acci-
dental state change of a nearby Flash cell occurs when another
Flash cell is being read.

Knowing the characteristics of each of the one or more
storage devices 176a-176m may lead to more efficient data
object mapping, error detection and correction, and storage
efficiency. As is well known in the art, deduplication may
reduce the amount of redundant data stored in the device
groups 173a-173m. When an application being executed on
one of the client computer systems 110a-110¢ performs a
store of a file, this file may be transferred to one of the data
storage arrays 120a-1204 through network 180. The dedupli-
cation application 178 may determine whether data compo-
nents of the file are redundant. Data components of the file
verified to be redundant are not stored. Rather, metadata may
be stored which references a copy of a data component
already residing in one of the device groups 173a-173m. If it
cannot be verified that a given data component is redundant,
the given data component will be stored.

The identification of duplicate data components during
deduplication may occur “in-line” or “inline”, as a write
request is being processed. In such a case, verified duplicate

10

15

20

25

30

35

40

45

50

55

60

65

8

data components are not actually written to storage for a write
request. During verification, data corresponding to a write
request may be partitioned into blocks, or components. A
fingerprint computation is then performed for each compo-
nent. As discussed later, any of several techniques for gener-
ating fingerprints that are well known may be used. A corre-
sponding fingerprint value, or fingerprint, of data associated
with a write access to one of the data storage arrays 120a-
1205 may then be compared to fingerprints of data already
stored in a storage subsystem 170. The comparisons of fin-
gerprints may utilize one or more tables of fingerprints, such
as in RAM 172 or otherwise. In various embodiments, data
components whose fingerprint matches that of a stored data
component may be deemed to be redundant. In some embodi-
ments, a matching fingerprint may not be considered conclu-
sive evidence that a data component is in fact identical to a
stored data component. In such embodiments, a further veri-
fication may be performed whereby the data component is
compared with the stored data component to verify that the
components are indeed identical. Verified duplicate data com-
ponents may be made to reference a corresponding copy
already stored in one of the data storage arrays 120a-1205.
Alternatively, the process of deduplication may be performed
as a “post-process” after the write request has completed.
While such a post-process deduplication may require fewer
up front resources, storage efficiency may be temporarily
reduced because duplicate data components are written to one
or more of the data storage arrays 120a-1205.

The deduplication application 178 may be located within
the storage controller 174 or within memory medium 130. In
one embodiment, the deduplication application 178 may
detect for any given data component one or more correspond-
ing maintained attributes. In various embodiments, dedupli-
cation component 178 may comprise any suitable combina-
tion of software and/or hardware. These maintained attributes
may affect storage efficiency. Examples of these correspond-
ing attributes may include a number of accesses to the given
data component, a data component age, a data component
size, a total number of times the given data component has
been deduplicated, a number of times the given data compo-
nent has been deduplicated for a given entry in a deduplica-
tion table, a total number of deduplications for a correspond-
ing volume, and so forth. In one embodiment, the attributes
may be used to determine which entry of two or more entries
corresponding to duplicate copies of data remains after dedu-
plication.

The deduplication application 178 may utilize such
attributes to determine a strategy for the deduplication of
redundant data stored on data storage arrays 120a-12056. The
strategy may utilize both in-line and post-process deduplica-
tion operations. For example, the deduplication application
178 may begin with in-line deduplication for a given write
request, but not finish the deduplication operation at this time.
Rather, the in-line deduplication operation may attempt to
verify whether or not a given data component has a duplicate
copy currently stored based on only partial information. If no
duplicate copy of the given data component is found, then the
in-line deduplication operation may complete without locat-
ing a duplicate of the component already stored in the system.
In such a scenario, the given data component may be written
to storage. At a later time, an offline or post-process dedupli-
cation operation may be performed that completes the dedu-
plication process by performing additional searches to search
for and locate duplicates of the given component among the
stored data components.

In addition to the above, the attributes may be used to
identify a particular group of stored data components—such

US 9,069,786 B2

9

as a percentage (e.g., 5%) of the total number of stored data
components that have the highest probability of being dedu-
plicated (or meet some other criteria as discussed more fully
below). If a given write request has a corresponding data
component that is not included in this group, then an
increased effort to find duplicate copies may be deferred to a
later time. In addition, the members of this portion of the
stored data components may change over time according to
the maintained attributes.

In various embodiments, the deduplication application 178
may support multiple index tables. These index tables may
also be referred to as lookup tables or deduplication tables.
For a particular data component, a corresponding entry in an
index table may store at least one or more of an associated
calculated fingerprint value, an identifier (e.g., a pointer) used
to identify its location on one of the storage devices 176a-
176m, and a corresponding length. Each of the multiple index
tables may be implemented as a data structure such as a binary
search tree, or an ordered binary tree, comprising a node-
based data structure. The properties of this data structure may
cause related sorting algorithms and search algorithms such
as in-order traversal to be very efficient.

In some cases, a complete index table may be very large
and may exceed the memory capacity of RAM 172. Accord-
ingly, in various embodiments one or more index tables are
configured to store data corresponding to only a fraction of all
data within the system. For example, a first index table stored
within RAM 172 may represent a subset of all data stored in
the system. In various embodiments, the maintained
attributes may be used to determine which stored data com-
ponents have corresponding entries in the first index table. In
some cases a second index table may correspond to a larger
subset of the data in the system. In such cases, some or all of
the entries in the first table could be included in the second
table, or they could be mutually exclusive. Further inclusive
orexclusive tables could be included in such a system. Entries
may be removed from one table and inserted in another table
based on the maintained attributes, or such entries could be
moved such that one table acts similar to a victim cache for
another. The movement of the entries may occur during given
events such as a deduplication operation, a garbage collection
operation, a trim operation, a secure erase operation, a read
request that does not initiate a deduplication operation, reach-
ing a given time threshold, reaching a certain table size, and so
forth. In addition to the above, embodiments are contem-
plated in which inline and offline searches are flexibly
applied. For example, an inline search for one data compo-
nent may search only a single index table, while an inline
search for another data component may search multiple index
tables. Offline searches could be similarly applied ina flexible
manner. How such a search is applied could be based on
attributes corresponding to the data component (e.g., prob-
abilities associated with the data component, the type of data
or request, etc.) or otherwise.

Each of the multiple index tables may also be referred to as
a “fingerprint table”. Different fingerprint tables may be used
at different times to attempt to identify stored data compo-
nents for which a newly-written component is a duplicate.
Fingerprints may be placed into one or more tables, based on
one or more attributes. Additionally, fingerprints may move
between different tables responsive to varying conditions. For
example, one fingerprint table might contain the 5% of fin-
gerprints corresponding to stored data components most
likely to be deduplicated, with another fingerprint table con-
taining the next 10% (but not the top 5%). A third fingerprint
table may contain the remaining fingerprints. In such an
embodiment, the fingerprint tables store fingerprints in an

10

15

20

25

30

35

40

45

50

55

60

65

10

exclusive manner. In other embodiments, one or more finger-
print tables may be inclusive of fingerprints in one or more
other tables. In another example, the LUNs may be divided
into sets based on their usage patterns, with one set being used
for virtual machine storage and another set being used for
database storage. One fingerprint table may then be used for
a subset of data stored in the first set, a second table may be
used for a subset of data stored in the second set, and a third
fingerprint table may contain all of the fingerprints corre-
sponding to stored data components. Numerous such alterna-
tives, and combinations of the above, are possible and are
contemplated.

Referring now to FIG. 2, one embodiment of a method 200
for performing deduplication is shown. The components
embodied in the network architecture 100 described above
may generally operate in accordance with method 200. For
purposes of discussion, the steps in this embodiment are
shown in sequential order. However, some steps may occur in
a different order than shown, some steps may be performed
concurrently, some steps may be combined with other steps,
and some steps may be absent in another embodiment.

In block 202, one or more given data components for an
operation are received. Such data components may corre-
spond to a received write request, a garbage collection opera-
tion, or otherwise. In various embodiments, data sent from
one of the client computer systems 110a-110¢ may be in the
form of a data stream, such as a byte stream. As is well known
to those skilled in the art, a data stream may be divided into a
sequence of fixed-length or variable-length data components,
or “chunks”, where a “chunk™ is a sub-file content-address-
able unit of data. A chunking algorithm may perform the
dividing of the data stream. In various embodiments, a table
may be used to map data corresponding to particular file types
to a most appropriate chunking method. In some cases a file’s
type may be determined by referring to its file name exten-
sion. Alternatively, in cases where a file type corresponding to
data is not indicated or otherwise directly known, guesses as
to the type of file to which data corresponds may be made and
used to inform the chunking algorithm used. For example, a
guess as to file type could be based on the data in the block or
the LUN in which the block is stored. Other methods for
ascertaining a file type to which data corresponds are possible
and are contemplated. The chunks later may be stored in one
of the data storage arrays 120a-1205 to allow for sharing of
the chunks. Numerous such embodiments are possible and
are contemplated.

Subsequent to receiving the data, a particular fingerprint
algorithm 204 may be chosen to produce a data component
fingerprint value for a given data component. For example, a
hash function, such as some or all of the output bits from
MDS, SHA1, SHA-256, cyclic-redundancy code (CRC), or
otherwise, may be used to calculate a corresponding finger-
print. Generally speaking, in order to know if a given data
component corresponding to a received write request may
already be stored in one of the data storage arrays 120a-1205,
a calculated fingerprint for the given data component may be
compared to fingerprints of data components stored in one or
more of the data storage arrays 120a-1205. If there is no
matching fingerprint, there is no copy of the data component
already stored on the system. If at least one fingerprint
matches, then there may already be a matching data compo-
nent stored on the system. However, in some embodiments, it
is also possible that two non-identical data components have
the same fingerprint. Using the generated fingerprint value for
a data component, a search may be performed to determine if
there is another data component already present in the system
that has a matching fingerprint value. In various embodi-

US 9,069,786 B2

11

ments, such fingerprint values may be stored in one or more
fingerprint tables within the system. Accordingly, a determi-
nation as to which of the fingerprint tables to search may be
made (block 206).

Having established which fingerprint tables are to be
searched, one of the tables is selected (block 208) and a
decision is made as to whether the selected table is searched
(decision block 210). A number of factors may be considered
when deciding whether to search a given table. For example,
resource usage and performance issues may be considered. If
the table is searched, then a matching fingerprint may be
found (decision block 212). In various embodiments, if a
matching fingerprint is found, then the corresponding data
already stored in the system may be identical to the received
data. However, the matching fingerprint may not be definitive
proof that the data itself matches. Such might be the case
where fingerprints collide or otherwise. Therefore, ifa match-
ing fingerprint is found, then a determination may be made as
to whether further verification steps are to be performed.
Generally speaking, verifying that data is a match entails
reading the stored data (decision block 214) and comparing
the read data to the received data (decision block 216). If the
stored data is already contained in memory, there is generally
no need to re-read it from its stored location. If the data
matches, then the received data is deemed redundant and a
new link is created between the already existing data (e.g., as
identified by a physical address) and the transaction corre-
sponding to the received data. For example, a new link may be
created between a write transaction virtual address and the
already stored data. In one embodiment, both a mapping table
and a link table (to be discussed more fully later) may be used
for storing such newly identified links.

At various steps in the process (e.g., blocks 210, 212, 214,
and 216), verification of a data match has not been achieved
and a determination is made as to whether the search should
continue. As noted above, resource and/or performance
issues may be considered when making such a determination.
If more tables are to be searched (decision block 222), then
one of the tables may be selected (block 208), and the process
repeated. If verification of a data match is not achieved at this
time (as in blocks 216 and 218), then confirmation that the
data is redundant is not made and the received data is written
to storage (block 224). Additionally, a new deduplication
entry may be created (block 226) as well as updating other
tables (block 220) such as an address mapping table (220) or
otherwise.

It is noted that while the above discussion describes a
process whereby tables to search are determined (block 206)
prior to proceeding, in other embodiments an identification of
more than one table may not be made in advance. Rather,
identification of a given table for search may be determined
one at a time (or only partially) as needed. Alternatively, a
combination of such approaches may be used. All such
embodiments are contemplated.

In addition to the general method depicted in FIG. 2, addi-
tional processes may be included which serve to improve the
overall deduplication process. In particular, various attributes
may be maintained which are used to identify which finger-
print tables might be searched and whether to search a given
identified table. Further, other attributes may be maintained
that are used to determine into which fingerprint table(s) a
given fingerprint is stored. For example, as will be described
in more detail below, fingerprints whose data is expected to be
deduplicated more frequently may be maintained in a finger-
print table which has a higher priority for being searched.
Alternatively, fingerprints corresponding to data of a given
type may be placed in one fingerprint table rather than

25

40

45

12

another. By storing fingerprints within the fingerprint tables
in such a manner, system performance and resource usage
may be improved.

It is noted that in various embodiments the access to fin-
gerprint tables shown in FIG. 2 may not be performed, such as
when a Bloom filter or other mechanism indicates the finger-
print is not present in the fingerprint tables. Additionally, in
some embodiments, an address to which a write transaction is
directed may correspond to an address range which has
known attributes. For example, a received write transaction
could be directed to a particular volume which is known to
store data unlikely to be deduplicated. For example, data
corresponding to a given database may be deemed less likely
to be deduplicated, while data corresponding to a virtual
machine may be deemed more likely to be deduplicated. For
example, a fingerprint table corresponding to a volume
including data believed to be more likely to be deduplicated
may be larger than would otherwise be the case. In various
embodiments, a volume table may include attribute related
information that may be used in such a way. In other embodi-
ments, other tables may be used for storing and maintaining
such attribute related information. In addition to controlling
the selection of fingerprint tables to be searched, limits on the
number of accesses to a given storage medium may be made.
In addition to utilizing various attributes to limit the finger-
print table search, various conditions such conditions as those
related to resource usage and performance may be considered
when limiting the fingerprint table search.

In one embodiment, a deduplication table may be parti-
tioned or otherwise comprise multiple fingerprint tables.
Each entry within a given table has an associated probability
or arange of probabilities of a corresponding data component
being deduplicated. In one example, for a received write
request, an in-line deduplication operation may access a first
fingerprint table with computed fingerprint values corre-
sponding to one or more data components. If the computed
fingerprint values are not found within the first fingerprint
table, then the in-line deduplication operation may stop and
allow a data component to be written to one of the storage
devices 176a-176m. In another example, according to a strat-
egy based on the associated attributes, if the computed fin-
gerprint values are not found in the first fingerprint table, then
a subsequent access of a second fingerprint table may occur.
It the computed fingerprint values are not found in the second
fingerprint table, then the in-line deduplication operation may
finish for a given data component and allow the given data
component to be written to one of the storage devices 176a-
176m. In one embodiment, both the first and the second
fingerprint tables may be concurrently accessed. Data com-
ponents written to the storage devices 176a-176m may be
deduplicated during a later post-process deduplication opera-
tion. In one embodiment, although a post-process deduplica-
tion operation may be performed concurrently with a garbage
collection operation, the accesses for the post-process dedu-
plication operation may occur similarly as for an in-line dedu-
plication operation. For example, the first fingerprint table
may be accessed before a second fingerprint table. In another
embodiment, the entries of the fingerprint tables may be
accessed concurrently.

As noted above, in various embodiments, attributes may be
used to determine where a fingerprint value is stored within
multiple fingerprint tables of a larger deduplication table.
FIG. 3 illustrates one embodiment of a method 400 for using
such attributes. Block 401 generally corresponds to the estab-
lishment of a strategy to be used for the following steps. This
strategy may be determined at system startup and/or dynami-
cally at any time during system operation. In some cases, a

US 9,069,786 B2

13

change in strategy may result in a change in the nature of the
attributes which are maintained. Should such a change in
strategy occur, the system may simultaneously maintain data
and attributes corresponding to multiple strategies. For
example, a change in strategy may affect only subsequently
stored data. In other embodiments, data and attributes main-
tained according to a prior strategy may be rebuilt to conform
to a newer strategy. All such embodiments are contemplated.
Inblock 402, one or more storage devices may be selected for
use in a storage subsystem. For example, one or more storage
devices 176a-176m within one or more of device groups
173-173m may be chosen for data storage use. In addition,
more than one of the storage data arrays 120a-1205 may be
chosen for this data storage use. An amount of storage space
and corresponding address space may be chosen prior to
choosing one or more of the storage devices 176a-176m. The
data storage space may be used for end-user applications
executing on client computer systems 110a-110¢, corre-
sponding inter-device parity information used in a RAID
architecture, corresponding intra-device redundancy infor-
mation, header and metadata information, and so forth.

In block 404, one or more corresponding attributes are
identified for a given data component. Examples of such
attributes include a number of accesses to the given data
component, a data component age, a data component size, a
total number of times the given data component has been
deduplicated, a number of times the given data component
has been deduplicated for a given entry in a deduplication
table, an amount and/or type of compression used for the data
component, and so forth. In various embodiments, these
attributes may be maintained and updated over time. For
example, the attributes for a given data component may be
updated responsive to an access of the given data component.
In some embodiments, the granularity with which such
attributes are maintained and/or updated may vary. For
example, rather than updating attributes on a per data com-
ponent basis, attributes corresponding to an identifiable group
of data components such as a volume or subvolume may be
updated. As described earlier, these maintained attributes
may affect storage efficiency.

In block 406, one or more events for updating the one or
more attributes are identified. Examples of such events may
include a deduplication operation, receiving a read or a write
request, a garbage collection operation, a trimming operation,
a secure erase operation, an update of attributes correspond-
ing to neighboring data components, reaching a given time
threshold, and so forth. If a given event of the identified events
occurs (decision block 408), one or more attributes corre-
sponding to the given event may be retrieved (block 410). For
example, deduplication of a data component may be detected.
In response, attributes associated with the data component
may be retrieved (block 410). If the current algorithm indi-
cates a change in location for a fingerprint, then such a change
may be made (block 412). For example, if a successful dedu-
plication of a data component results in the number of suc-
cessful deduplications for that block reaching or exceeding a
given threshold, then the block may move from being deemed
a low(er) deduplicating block to a high(er) deduplicating
block. Such a change may in turn lead to entering the finger-
print into a table with a higher deemed probability of dedu-
plication, and potentially removing the fingerprint from the
table in which it is currently stored. This may be referred to as
“promoting” the fingerprint (entry). Alternatively, an entry
corresponding to a block may be “demoted” if deduplication
of the block falls below a given threshold. In such a case, a
corresponding fingerprint may be removed from its current
table and entered into one which is used for fingerprints

5

10

15

20

25

30

40

45

50

55

60

65

14

having a lower (predicted) probability of deduplication. For
example, if a given fingerprint table contains the 5% of the
total number of stored data components that have the highest
probability of being deduplicated, and it is determined (or
predicted) that the likelihood of the data corresponding to the
entry being deduplicated is not in the top 5%, then the entry
may be moved out its current fingerprint table to a different
fingerprint table. In addition to making any changes (block
412), the associated attributes may be updated (block 414). It
is noted that movement of entries between fingerprint tables
need not be based on determined probabilities of deduplica-
tion. Any desired algorithm for determining which fingerprint
table an entry is to be stored may be used.

In addition to moving fingerprints between tables, infor-
mation stored in a given entry may be removed from all
fingerprint tables within a deduplication table. This eviction
of an entry may occur if the entry is determined from its
associated attributes to not be a probable candidate for dedu-
plication or if the block to which the entry refers is no longer
valid. For example, an entry that has not been deduplicated for
a given amount of time may be evicted from the deduplication
table. This eviction reduces the total size of the deduplication
table by removing entries corresponding to a data component
that have a relatively low probability of having a duplicate
stored in one of the data storage arrays 120a-1205. It is noted
that an entry may be removed from the deduplication table
even if that entry is the target of multiple virtual block point-
ers, since such removal may only preclude future deduplica-
tions and will not affect deduplications that have already
occurred.

In one embodiment, when an entry is evicted from the
deduplication table, an indication of the eviction may be
written to a corresponding physical location within one of the
data storage arrays 120a-1205. For example, a physical loca-
tion within one of the storage devices 176a-176m that cur-
rently stores or is going to store a corresponding data com-
ponent may be written with the indication. In one
embodiment, both the eviction from the deduplication table
and the marking with a corresponding indication in a data
physical storage location may occur during a write request, a
garbage collection operation, a trim operation, a secure erase
operation, and so forth. In such cases, both the entries in the
fingerprint tables and the data components stored within the
storage devices 176a-176m may be already moving or updat-
ing during these operations. Therefore, the marking of the
indication may not introduce a new write operation.

Turning now to FIG. 4, a generalized block diagram illus-
trating one embodiment of an entry storing attributes 500 is
shown. It is noted that while FIG. 4 depicts all of the attribute
data as being stored as part of a single entry, in various
embodiments the attribute data may in fact be distributed over
multiple locations. In various embodiments, attributes asso-
ciated with a given block of data and/or corresponding fin-
gerprint may be used for a variety of purposes, including
where a corresponding fingerprint(s) is to be stored in the
deduplication tables. For example, as discussed above, if a
given data component is determined or predicted to be highly
deduplicated, its fingerprint may be stored in a fingerprint
table used for more highly deduplicated data. Similarly, data
deemed less likely to be deduplicated has its fingerprint stored
in a lower probability fingerprint table. It is noted that
attributes associated with a given fingerprint may be stored
anywhere within the system. For example, such attributes
may be stored in association with corresponding data on a
LUN. Additionally, such attributes may be stored in dedupli-
cation tables, copies may be maintained in a variety of loca-
tions in the system, and otherwise.

US 9,069,786 B2

15

As shown in the example, entry 501 may hold an address
503A which may be a virtual address or a physical address. In
various embodiments, address 503A may refer to a single
address, or it may refer to a range of addresses. The entry 501
may be accessed by a pointer value that matches the informa-
tion stored in the address field 503 A. The information stored
in the remaining fields may correspond to a given data com-
ponent corresponding to a physical location in the storage
devices 176a-176m or a virtual address used by one of the
client computer systems 110a-100c. For a given physical or
virtual address the table entry 501 may store an access rate
503B, a total number of accesses 503C, a data component age
503D, a data component size 503E, a corresponding storage
device age 503F, a deduplication rate 503G, a total number of
deduplications 503H, an error rate 5031 and a total number of
errors 503] for the given component. In addition, a status field
503K may store an indication of valid data within a respective
entry. For a given physical or virtual address, other attributes
may be included such as a total number of deduplications for
an associated volume and a total number of accesses for an
associated volume. Although the fields 503-512 are shown in
this particular order, other combinations are possible and
other or additional fields may be utilized as well. The bits
storing information for the fields 503-512 may or may not be
contiguous.

Referring now to FIG. 5, a block diagram illustrating one
embodiment of a system 600 configured to maintain
attributes related to deduplication is shown. In one embodi-
ment, an attribute table 630 may store attribute information
that is used to determine how much effort is put into dedupli-
cation for a received write transaction (e.g., such as discussed
in relation to FIGS. 2 and 3). Attribute table 640 may store
attribute information that is used to determine where a given
fingerprint is stored within the system’s fingerprint tables
(e.g., as discussed in FIG. 3). For example, each of the entries
642a-642j in table 640 may comprise the information shown
in attributes table entry 501. In the example shown, attribute
tables 630 and 640 are shown as two distinct tables for ease of
illustration. However, it is noted that the attributes described
therein may be stored in any manner within the system and
may be spread across multiple locations. In various embodi-
ments, copies of such attributes may also be cached or other-
wise stored in different levels within a storage hierarchy such
that multiple copies of attribute information may exists simul-
taneously.

In the embodiment shown, two paths (a read path and a
write path) through various components of the system may
generally be traversed depending on the type of transaction
received. In the example shown, a key 610 corresponding to a
received transaction may be used for further processing in the
system. In one embodiment, the key 610 may comprise a
volume identifier (ID) 602, a logical or virtual address 604, a
snapshot ID 606, a sector number 608, and so forth. In various
embodiment, each of the previously discussed storage con-
trollers 170 within the data storage arrays 120a-1205 may
support storage array functions such as snapshots, replication
and high availability. In addition, each of the storage control-
lers 170 may support a virtual machine environment that
includes a plurality of volumes with each volume including a
plurality of snapshots. In one example, a storage controller
170 may support hundreds or thousands of volumes, wherein
each volume includes thousands of snapshots. In one embodi-
ment, a volume may be mapped in fixed-size sectors, such as
a4-kilobyte (KB) page within storage devices 176a-176m. In
another embodiment, a volume may be mapped in variable-
size sectors. In such embodiments, the volume ID 602, snap-
shot ID 606, and sector number 608 may be used to identify a

10

20

25

30

35

40

45

50

55

60

65

16

given volume. Accordingly, a given received read or write
request may identify a particular volume, sector and length.
Although the fields 602-608 are shown in this particular
order, other combinations are possible and other or additional
fields may be utilized as well. The bits storing information for
the fields 602-608 may or may not be contiguous.

In one embodiment, the key 610 corresponding to a read
transaction may generally follow a read path, while a key 610
that is part of a write transaction may follow a write path. As
shown, during a read, the key 610 may be used to index a
mapping table 620. The mapping table 620 may comprise a
plurality of entries 622a-622¢g, wherein each entry holds a
virtual-to-physical mapping for a corresponding data compo-
nent. In this manner, the mapping table 620 may be used to
map logical read requests from each of the client computer
systems 110a-110c¢ to physical locations in storage devices
176a-176m. 1t is noted that in various embodiments, identi-
fied physical locations (e.g., represented by a physical
address) may be further remapped by storage 680. As shown,
each ofthe entries 622a-622g may hold a virtual index 624, a
corresponding physical index 626, and status information
628. Similar to the fields 602-608 within the key 610, the
fields 624-628 are shown in a particular order. However, other
combinations are possible and other or additional fields may
be utilized as well. The physical index 626 may generally be
an identifier (e.g., a physical pointer or address) used to
identify a given physical location within the storage devices
176a-176m. As described earlier, the physical index 626 may
include sector numbers, data chunk and offset numbers, track
numbers, plane numbers, a segment identifier (ID), and so
forth. In addition, the status information 628 may include a
valid bit which may be used to indicate the validity of a
corresponding mapping.

In one embodiment, the entries 622a-622¢ within the map-
ping table 620 may be sorted such that the sorting is done first
by the volume ID 602, then by the sector number 608, and
then by the snapshot ID 606. This sorting may serve to group
the entries 622a-622g corresponding to different versions of
data components within different snapshots together. Such an
arrangement may lead to fewer read operations to find a given
data component during a lookup operation for a read request.
During a garbage collection operation, the operation may
arrange the data components within the storage devices 176a-
176m in a sorted manner, wherein the sorting is done first by
the volume ID 602, then by the snapshot ID 606, and then by
the sector number 608. This may serve to group the data
components in storage devices 176a-176m that are logically
adjacent into physically adjacent locations.

In one embodiment, a physical index 629 may be read from
the mapping table 620 during a lookup operation correspond-
ing to a received read request. The physical index 629 may
then be used to locate a physical location within the storage
devices 176a-176m. In some cases, a read request may
include a length that spans multiple sectors. Therefore, there
may be multiple parallel lookups performed on the mapping
table 620. In addition, there may be multiple read operations
sent to the storage devices 176a-176m to complete a received
read request from one of the client computer systems 110a-
110c.

In addition to the above, the key 610 may correspond to a
received write request and may follow a write path as shown.
In the example shown, the key 610 may be conveyed to either
(or both) of attribute table 630 and control logic 660. In one
embodiment, attribute table 630 stores attribute information
regarding the storage environment and/or data stored within
the system. In some embodiments, attribute table 630 may
correspond to a volume table. The attribute table 630 may

US 9,069,786 B2

17

comprise a plurality of entries 632a-632/, wherein each entry
holds attributes associated with a virtual address, addresses,
or range of addresses. Generally speaking, attributes may be
maintained for a subset of addresses in the system. However,
maintaining attributes for all addresses is contemplated.

When a write request is received, control logic 660 may
receive or otherwise access associated attributes from the
table 630. In addition, control logic 660 may receive user
inputs 650. Received write requests may be placed in a buffer
upon receipt, such as a buffer within a non-volatile random
access memory (NVRAM). When the received write request
is buffered, an acknowledgment may be sent to the corre-
sponding one of the client computer systems 110a-110c. At a
later time, an asynchronous process may flush the buffered
write operations to the storage devices 176a-176m. However,
deduplication may occur both prior to sending write requests
from the DRAM to the NVRAM and prior to sending write
requests from the NVRAM to the storage devices 176a-
176m. In cases where inline deduplication detects a copy of
the received write data already exists in the system, the
received write data may be discarded.

Theuser inputs 650 may include identification of particular
application and corresponding volumes that may have a high
probability of deduplication during the execution of the iden-
tified particular applications. The identified applications may
include storage backup operations, given virtual machine
support applications, development software producing a par-
ticular type of development data, and so forth. The user inputs
650 may include identification of a range or a pattern of
virtual addresses used to identify corresponding data compo-
nents with an associated virtual index that satisfies the range
or pattern with respect to a virtual index of a current read/
write request. For example, a given data component may have
a high probability of deduplication if the given data compo-
nent is located near a data component that is currently being
deduplicated. A stride may be used to identify corresponding
virtual data component indexes. In addition, the user inputs
650 may include administrative settings.

Control logic 660 may comprise deduplication strategy
logic 662, attributes update logic 664, table entries movement
logic 666, and mapping table update logic 668 which is con-
figured to update mapping table 620 (e.g., as described in step
220 of FIG. 2). The deduplication strategy logic 662 may
determine, for a search of a deduplication table, a number of
lookup operations to use for a search for both an inline and a
post-process deduplication operation. In addition, the dedu-
plication strategy logic 662 may determine a number of
lookup operations to use for each given storage medium used
to store information corresponding to the deduplication table.
Further details are provided later.

The attributes update logic 664 within the control logic 660
may determine which entries in the tables 630 and 640 may be
updated during an identified event, such as the events listed
above corresponding to block 414 of method 400. The table
entries movement logic 666 may determine how entries
within a deduplication table (e.g., fingerprint tables corre-
sponding to the deduplication table) are stored and moved
within the table. In addition, the logic 666 may determine a
manner for storage and movement of stored data in physical
locations in storage devices 176a-176m. Similarly, the logic
666 may determine how virtual-to-physical mappings are
performed. For example, the logic 666 may perform map-
pings to group together deduplicated data components. It is
noted that while FIG. 5 (and other figures) depicts selected
arrows as being bidirectional and others as unidirectional, this
is not intended to be limiting. In various embodiments, com-

10

15

20

25

30

35

40

45

50

55

60

65

18

munication may occur in either or both directions between
any of the components in the system.

Referring now to FIG. 6, a generalized block diagram
illustrating one embodiment of a logical representation of a
deduplication table 510 is shown. The information stored in
the deduplication table 510 may provide a fast location iden-
tification of data components stored in the data storage arrays
120a-12054. The information stored in the deduplication table
510 may include mappings between one or more calculated
fingerprint values for a given data component and a physical
pointer to a physical location in one of the storage devices
176a-176m holding the given data component. In addition, a
length of the given data component and status information for
a corresponding entry may be stored in the deduplication
table 510.

As described earlier, a chunking/partitioning algorithm
may produce a given data component 502 from data corre-
sponding to a received request. A fingerprint algorithm 504 of
multiple fingerprint algorithms may then be selected and used
to produce a data component fingerprint 506. The resulting
fingerprint value may then be used to access the deduplication
table 510. In various embodiments, one or more fingerprint
algorithms may be supported and one fingerprint algorithm
may be more complex to perform than another fingerprint
algorithm. Accordingly, the given fingerprint algorithm may
consume more computation time than another. Additionally,
some fingerprint algorithms may produce larger fingerprints
than others and consume more storage space. For example, an
MDS type fingerprint algorithm may be more complex to
perform than a CRC32C fingerprint algorithm. However,
there may be fewer collisions, or false matches, associated
with the first algorithm. In another example, the result of the
fingerprint algorithm may be determined by keeping only
some of the bits generated by a function such as MDS5 or
CRC32C. Keeping more bits requires more space, but may
also reduce the likelihood of a collision. A collision may
cause a read of data stored in persistent storage, such as the
storage devices 176a-176m, for a subsequent comparison
operation. The comparison may be performed to verify
whether a match found in the deduplication table 510 corre-
sponds to data stored in persistent storage that matches the
value of the given data component 502. In addition, read
operations for both data and attributes followed by compari-
son operations may be performed to determine which one of
multiple matches may remain in persistent storage during
deduplication of redundant data. The read operations and the
comparison operations add processing time to a deduplica-
tion operation.

Switching between a first and a second fingerprint algo-
rithm of multiple fingerprint algorithms may occur when a
strategy for deduplication changes. In one embodiment,
attributes such as those discussed above may be used by
control logic to determine a strategy and changes to a strategy
for deduplication. For example, a first strategy that utilizes
less storage space for fingerprint values, but results in more
collisions, may be chosen. At a later time, a second strategy
may be chosen to replace the first strategy. The second strat-
egy may utilize more storage space for fingerprint values
resulting in fewer collisions. The later time for such a change
in strategy for deduplication may occur during a given iden-
tified event, such as the events described earlier in FIG. 3, or
otherwise.

Deduplication table 510 may comprise entries for all or
only a portion of the data components stored in one or more of
data storage arrays 120a-1205. In one embodiment, the dedu-
plication table 510 may not be complete and therefore may
not have an entry for each stored data component. Also, one or

US 9,069,786 B2

19

more entries within the deduplication table 510 may be
evicted as further described later. In one embodiment, the
fingerprint tables 520-540 together comprise some or all of a
deduplication table depending on a chosen implementation.
In other embodiments, the fingerprint tables 520 and 530
store copies of information stored in fingerprint table 540.
Further, the fingerprint table 540 may be stored in volatile
and/or non-volatile storage within the system (e.g., such as
storage devices 176a-176m, RAM 172, processor cache(s),
etc.).

In one embodiment, a lookup operation into the dedupli-
cation table 510 may be controlled by control logic in a
storage controller. For example, attribute information may be
used to determine how many of the fingerprint tables 520-540
to search. In addition, a type of a storage medium storing a
given fingerprint table may determine how many input/output
(I/O) accesses may be used to search a given fingerprint table.
For example, a search determined to have a limited amount of
time for lookup may access fingerprint tables stored in a
processor cache or a non-persistent storage, but not access
any fingerprint tables stored in persistent storage. Alterna-
tively, a limited number of I/O accesses may be allowed to
persistent storage. In addition, a lookup may access only
particular portions of the deduplication table 510 based on an
estimated probability of success.

Each entry in the fingerprint table 540 may comprise one or
more calculated fingerprint values corresponding to a given
data component, such as fingerprints 542a-545a in a first
entry. Additionally, each of the fingerprints 542a-545a may
be calculated from a different fingerprint algorithm. The
pointer 546a may be a physical pointer or address for a given
physical location within the storage devices 176a-176m. In
addition, each entry may comprise status information, such as
the status field 548a in the first entry. The status information
may include a valid bit, a flag to indicate whether or not a
corresponding data component is a candidate for deduplica-
tion, a length of the corresponding data component, and so
forth.

Similar to the storage arrangement in the fingerprint table
540, each entry in the fingerprint table 530 may comprise one
or more calculated fingerprint values corresponding to a
given data component, such as fingerprint values 532a-534a
in a first entry. In some embodiments, the fingerprint tables
may be inclusive such that some of the fingerprint values
532a-534a stored in the fingerprint table 530 may be copies of
one or more of the fingerprint values 542a-545a, 5425-545b,
542m-545m, and so forth, stored in the fingerprint table 540.
In other embodiments, fingerprint values stored in one table
are exclusive of those stored in another. All such embodi-
ments are contemplated.

In one embodiment, the fingerprint table 530 holds a
smaller number of entries than a number of entries in the
fingerprint table 540. In addition, each entry in the fingerprint
table 530 holds less information than an entry in the finger-
print table 540. Similarly, the fingerprint table 520 may hold
a smaller number of entries than a number of entries in the
fingerprint table 530 and each entry in the fingerprint table
520 may hold less information than an entry in the fingerprint
table 530. In other embodiments, fingerprint table 530 may
not hold a smaller number of entries than that of fingerprint
table 540. Rather, fingerprint table 530 could hold more
entries, and each entry could hold more information. Simi-
larly, fingerprint table 520 could be larger than one or both of
fingerprint table 530 and fingerprint table 540. Although the
fields 522a-548m within the fingerprint tables 520-540 are
shown in a particular order, other combinations are possible

10

20

25

30

40

45

20

and other or additional fields may be utilized as well. The bits
storing information for the fields 522a-548m may or may not
be contiguous.

While fingerprint tables 520-540 are shown as tables, the
tables 520-540 may be data structures such as a binary search
tree, or an ordered binary tree, comprising a node-based data
structure. In addition, while three fingerprint tables 520-540
are shown, different numbers of fingerprint tables are pos-
sible and contemplated. Further, one or more filters such as a
Bloom filter may be included in the deduplication table 510.
In such an embodiment, the filter may be accessed to quickly
determine whether a calculated data component fingerprint
506 is within one or more of the fingerprint tables. For
example, a filter may be configured to definitively indicate
that a data component is not stored in a data table. If the filter
does not rule out its presence, deduplication processing may
continue or the data component may be stored in the data
table.

As described earlier, a chosen fingerprint algorithm may be
used to calculate the data component fingerprint 506. Subse-
quently, the data component fingerprint 506 may be used to
access the deduplication table 510. The chosen fingerprint
algorithm may be also used to determine which fingerprint
values stored in the fingerprint tables 520-540 to compare to
the data component fingerprint 506. For example, the finger-
print table 520 may store fingerprint values corresponding to
data components predicted to have a relatively high probabil-
ity of being deduplicated. In one embodiment, fingerprint
table 520 may store information corresponding to the 5% of
the total number of stored data components that have the
highest probability of being deduplicated. The probability of
deduplication for a given data component may be based, at
least in part, on the attributes stored in the attributes table 640.

The data component fingerprint 506 may access one or
more tables within deduplication table 510. If no matching
fingerprint is found, then the corresponding data may be
scheduled to be written to one of the storage devices 176a-
176m. If a matching fingerprint is found, then the data corre-
sponding to the matching fingerprint may be retrieved from
storage and compared to the received write data. If the data is
determined to be identical, then a new link for the stored data
is created and the write data discarded. If the retrieved data is
not identical to the write data or no matching fingerprint for
the write data is found, then the write data is stored. In both
cases, a new virtual to physical mapping table entry (e.g., in
table 620) may be created for the write as previously dis-
cussed.

In one embodiment, the deduplication table 510 may store
multiple entries for a given data component. For example, the
deduplication table 510 may store an entry for a given 4 KB
page as well as a separate entry for each 1 KB block within the
given 4 KB page. Alternatively, a lookup into the deduplica-
tion table 510 may occur at a granularity of a 512-byte block.
It a match is found and a duplicate copy of data stored in one
of the data storage arrays 120a-1205 is found and verified, a
subsequent lookup of the next contiguous 512 bytes may be
performed. If a fingerprint value match is found for this data
block and a duplicate copy of data stored in one of the data
storage arrays 120-1205 is found and verified, a subsequent
lookup of the next contiguous 512 bytes may be performed.
This process may be repeated until no match is found. There-
fore, deduplication of data components may be found at a
finer granularity while also still maintaining table entries in
the deduplication table 510 for larger sized data components.

For a deduplication table 510 that supports a finer granu-
larity of sizes for data components, more fingerprint value
hits may be produced during a lookup operation for a given

US 9,069,786 B2

21

received write request. For a deduplication table 510 that
supports a more coarse granularity of sizes for data compo-
nents, a higher storage efficiency may be achieved and fewer
fingerprint value hits may be produced during a lookup opera-
tion for a given received write request. In some embodiments,
a deduplicated data component may have neighboring data
components that have also been deduplicated. For example, a
given 512-byte data component may have a neighboring 512-
byte deduplicated component; thus forming a 1 KB dedupli-
cated block. In such a case, an entry may be added to the
deduplication table 510 associated with the deduplicated 1
KB block. In this manner, data components and their corre-
sponding entries are effectively coalesced to form larger
blocks. Alternatively, a table entry within the deduplication
table 510 corresponding to a larger data size may be divided
to produce multiple table entries with corresponding smaller
data sizes. Such a division may produce more fingerprint
value hits during a lookup into the deduplication table 510.

Both a fingerprint algorithm and a data size or length cor-
responding to a table entry within the deduplication table 510
may be reconsidered. Such reconsideration may occur peri-
odically, during identified events as described earlier in FIG.
3, oratany other desired time. As may be appreciated, making
changes to the algorithm(s) used and/or data sizes used may
result in changes to calculation times and may alter the prob-
ability of a collision. For example, increased data collisions
may incur additional read operations of a persistent storage
data location for a data comparison. Changes in the supported
data size may result in more deduplications of smaller blocks
or fewer deduplications of larger blocks. All such ramifica-
tions should be taken into account when making such
changes.

In one embodiment, one or more entries within the dedu-
plication table 510 may store a first fingerprint value for a
corresponding data component. A second fingerprint value
may be stored with the corresponding data component in one
of the storage devices 176a-176m. In various embodiments,
the first fingerprint value is a different and smaller fingerprint
value than the second fingerprint value. Different fingerprint
algorithms may be used to compute the first fingerprint value
and the second fingerprint value. In another example, the first
fingerprint value is a function of the fingerprint value (e.g., a
subset of bits of the fingerprint value) and the second finger-
print value is also a function of the same fingerprint value
(e.g., some or all of the remaining bits of the fingerprint
value). During a lookup into the deduplication table 510,
when a subset or an entire value of the data component fin-
gerprint 506 matches a first fingerprint value in a given table
entry, such as fingerprint 532/ in the fingerprint table 530, a
corresponding data storage location may be read. In embodi-
ments in which the first fingerprint value is a subset of bits of
the fingerprint value, a second fingerprint value may be stored
in this data location in addition to a corresponding data com-
ponent. Either a second fingerprint value different from the
data component fingerprint 506 or a subset of the data com-
ponent fingerprint 506 may be compared to the stored second
fingerprint value. If there is a match, then a comparison may
be performed between the stored data component and a data
component value corresponding to a received read/write
request, a garbage collection operation, or otherwise.

In one embodiment, the deduplication table 510 may be
partitioned in a manner to allow one or more nodes in a cluster
to process lookup operations for a given partition of the table.
Therefore, deduplication may occur across multiple nodes to
reduce storage space on a given node. A virtual-to-physical
mapping table, such as the mapping table 620, may refer to
data components across multiple nodes for increased storage

10

15

20

25

30

35

40

45

50

55

60

65

22

efficiency. The deduplication table 510 may still be stored
across storage devices within a cluster in the cluster and may
be repartitioned without moving any of the stored data. A
smaller portion of the deduplication table 510, such as the
fingerprint tables 520-530 may be stored on each node while
a larger portion, such as the fingerprint table 540, may be
partitioned. Each time a node joins or leaves a given cluster,
the deduplication table 510 may be repartitioned among the
current nodes in the given cluster. The deduplication table 510
may support one deduplication address space across one or
more volumes and snapshots on one or more nodes in the
given cluster. In various embodiments, the deduplication
table 510 may be divided among several nodes to increase the
effective cache storage efficiency for a fingerprint lookup
operation. This division of the deduplication table 510 may
occur by fingerprint value, by fingerprint algorithm, by an
estimated probability of success, by a storage strategy, by a
random process, or otherwise.

In one embodiment, an entry is allocated, or registered,
within the deduplication table 510 when a fingerprint lookup
operation into the deduplication table 510 results in a miss.
This miss may occur during an inline deduplication operation
or a post-process deduplication operation. Additionally, as
previously discussed in FIG. 2, on a hit a link table may be
updated that stores links for deduplicated data. For example,
responsive to successfully deduplicating received write data,
anew entry is created in the link table. In some embodiments,
new table entries may be registered during a post-process
deduplication operation. In other words, during an inline
deduplication operation, a miss during a fingerprint lookup
into the deduplication table 510 does not produce registration
of a table entry. During a post-process deduplication opera-
tion, a miss during a fingerprint lookup into the deduplication
table 510 does produce registration of a table entry. In one
embodiment, a duplicate copy is verified during deduplica-
tion by a matching fingerprint value. In another embodiment,
a duplicate copy is verified by both a matching fingerprint
value and a matching value for a corresponding data compo-
nent. Numerous such embodiments are possible and are con-
templated.

Turning now to FIG. 7, a generalized block diagram of one
embodiment of a fingerprint table 520 is shown. For purposes
of discussion, fingerprint table 520 will be described. How-
ever, the following discussion is not intended to be limited to
fingerprint table 520 (e.g., as shown in FIG. 6). Rather, the
discussion may be applicable fingerprint table 530, 540, and
soon. As discussed earlier, one or more tables may be used for
deduplication of duplicate copies of user data. In various
embodiments, such tables (or similar table) may also be used
for I/O redirection or translation, volume snapshot mappings,
and so forth. The diagram shown in FIG. 7 represents a logical
representation of one embodiment of the organization and
storage of the fingerprint table. Each level shown may include
deduplication table entries corresponding to a different
period of time. For example, level “1” may include informa-
tion older than information stored in level “2”. Similarly, level
“2” may include information older than information stored in
level “3”, and so on. The information stored in the records,
pages and levels shown in FIG. 7 may be stored in a random-
access manner within storage devices 176a-176m. Addition-
ally, copies of portions or all of a given fingerprint table
entries may be stored in RAM 172, in buffers within control-
ler 174, in memory medium 130, and in one or more caches
within or coupled to processor 122. In various embodiments,
a corresponding index may be included in each level for
mappings which are part of the level. Such an index may
include an identification of fingerprint table entries and where

US 9,069,786 B2

23

they are stored (e.g., an identification of the page) within the
level. In other embodiments, the index associated with fin-
gerprint table entries may be a distinct entity, or entities,
which are not logically part of the levels themselves.

Generally speaking, each fingerprint table comprises a set
of rows and columns. A single record may be stored in a
fingerprint table as a row. A record may also be referred to as
an entry. In one embodiment, a record stores at least one tuple
including a key or fingerprint value. Tuples may (or may not)
also include data fields including data such as a pointer used
to identify or locate data components stored in storage sub-
system 170. It is noted that in various embodiments, the
storage subsystem may include storage devices (e.g., SSDs)
which have internal mapping mechanisms. In such embodi-
ments, the pointer in the tuple may not be an actual physical
address per se. Rather, the pointer may be a logical address
which the storage device maps to a physical location within
the device. Over time, this internal mapping between logical
address and physical location may change. In other embodi-
ments, records in the fingerprint table may only contain key
fields with no additional associated data fields. Attributes
associated with a data component corresponding to a given
record may be stored in columns, or fields, in the table. Status
information, such as a valid indicator, a data age, a data size,
and so forth, may be stored in fields, such as FieldO to FieldN
shown in FIG. 7. In various embodiments, each column stores
information corresponding to a given type. In some embodi-
ments, compression techniques may be utilized for selected
fields which in some cases may result in fields whose com-
pressed representation is zero bits in length.

In the example shown, responsive to a hit on a key value
549, the fingerprint table 520 may convey a pointer 551 that
indicates a location within the data storage subsystem 170
storing a data component corresponding to a received data
storage access request (e.g., as discussed in FIG. 2). The key
value may be compared to one or more key values stored in
the deduplication table. In the illustrated example, simpler
key values, such as “0”, “2”, “12” and so forth, are shown for
ease of illustration. The physical pointer value 551 may be
stored in one or more of the fields in a corresponding record.
In some embodiments, the pointer value 551 may include a
segment identifier (ID) and a physical address identifying the
location of storage. A segment may be a basic unit of alloca-
tion in each of the storage devices 176a-176m. A segment
may have a redundant array of independent device (RAID)
level and a data type. During allocation, a segment may have
one or more of the storage devices 176a-176m sclected for
corresponding storage. In one embodiment, a segment may
be allocated an equal amount of storage space on each of the
one or more selected storage devices of the storage devices
176a-176m. The data storage access request may correspond
to multiple sectors, which may result in multiple parallel
lookups. A write request may be placed in an NVRAM buffer,
such as RAM 172, and a write completion acknowledgment
may be sent to a corresponding client computer of the client
computers 110a-110c. At a later time, an asynchronous pro-
cess may flush the buffered write requests to the storage
devices 176a-176m.

In various embodiments, a fingerprint table may comprise
one or more levels as shown in FIG. 7. In one embodiment, the
fingerprint table may comprise 16 to 64 levels, although other
numbers of levels supported within a fingerprint table are
possible and contemplated. In FIG. 7, three levels labeled
Level “17, Level “2” and Level “N” are shown for ease of
illustration. Each level within a fingerprint table may include
one or more partitions. In one embodiment, each partition is
a 4 kilo-byte (KB) page. For example, Level “N” is shown to

10

15

20

25

30

35

40

45

50

55

60

65

24

comprise pages 550a-550g, Level “2” comprises pages 550/-
5505 and Level “1” comprises pages 550k-550x. It is possible
and contemplated other partition sizes may also be chosen for
each of the levels within a fingerprint table. In addition, it is
possible one or more levels have a single partition, which is
the level itself.

In one embodiment, multiple levels within a fingerprint
table are sorted by time. For example, in FIG. 7, Level “1”
may be older than Level “2”. Similarly, Level “2” may be
older than Level “N”. In one embodiment, when a condition
for inserting one or more new records in the fingerprint table
is detected, a new level may be created. In various embodi-
ments, when a new level is created the number/designation
given to the new level is greater than numbers given to levels
that preceded the new level in time. For example, if the most
recent level created is assigned the value 8, then a newly
created level may be assigned the value 9. In this manner a
temporal relationship between the levels may be established
or determined. As may be appreciated, numerical values need
not be strictly sequential. Additionally, alternative embodi-
ments may reverse the numbering scheme such that newer
levels have smaller numerical designations. Further, other
embodiments may utilize non-numerical designations to dis-
tinguish between levels. Numerous such embodiments are
possible and are contemplated. Each next older level has a
label decremented by one from a label integer value of a
previous younger level. A separate table not shown may be
used to logically describe the fingerprint table. For example,
each entry of the separate table may include a given level ID
and a list of the page IDs stored within the given level ID.

By creating a new highest level for an insertion of new
records, the fingerprint table is updated by appending the new
records. In one embodiment, a single level is created as a new
highest level and each of the new records is inserted into the
single level. In another embodiment, the new records may be
searched for duplicate keys prior to insertion into the finger-
print table. A single level may be created as a new highest
level. When a given record storing a duplicate key is found,
each of the records buffered ahead of the given record may be
inserted into the single level. The new records may be buft-
ered in a manner to preserve memory ordering, such as in-
order completion of requests. Then another single level may
be created and the remainder of the new records may be
inserted into this other single level unless another record
storing a duplicate key is found. If such a record is found, then
the steps are repeated. Existing records within the fingerprint
table storing a same key value as one of the new records are
not edited or overwritten in-place by the insertion of the new
records.

Although the sizes of the levels are illustrated as increasing
with lower levels being larger than newer levels, the higher
levels may alternate between being larger or smaller than
neighboring levels. The number of newer records to insert
into the fingerprint table may vary over time and create the
fluctuating level sizes. The lower levels may be larger than
newer levels due to combining or flattening of the lower
levels. Two or more lower levels may be flattened into a single
level when particular conditions are detected.

With no edits in-place for the records stored in the finger-
print table, newer records placed in higher levels may over-
ride records storing a same key value located in the lower
levels. For example, when the fingerprint table is accessed by
a given key value, one or more levels may be found to store a
record holding a key value matching the given key value. In
such a case, the highest level of the one or more levels may be
chosen to provide the information stored in its corresponding
record as a result of the access. Further details are provided

US 9,069,786 B2

25
later. In addition, further details about the detected conditions
for inserting one or more new records into the fingerprint
table and the storage of information are provided later.

In one embodiment, entries within a given page may be
sorted by key. For example, the entries may be sorted in
ascending order according to a key included in the entry.
Additionally, in various embodiments, the pages within a
level may be sorted according to any desired sort order. In
various embodiments, the pages within a level may also be
sorted (e.g., according to key values or otherwise). In the
example of FIG. 7, page 550a of Level N includes records
sorted according to key value in ascending order. In various
embodiments, one or more columns may be used to store key
values. In the example of FIG. 7, two columns or fields are
shown in each tuple for storing key values. Utilizing such key
values, the records then may be sorted in a desired order.
Sorting may be performed based on any of the key values for
a records, or any combination of key values for the record. In
the example shown, the first record stores a key value includ-
ing 0 and 8 stored in two columns, and the last record stores
a key value including 12 and 33. In this illustrated example,
each sorted record in page 550a between the first and the last
record stores a key value between 0 and 12 in the first column
and the records are arranged in a manner to store key values
based (at least in part) on the first column in an ascending
order from 0 to 12. Similarly, page 5505 includes sorted
records, wherein the first record stores key values of 12 and 39
and the last record stores key values of 31 and 19. In this
illustrated example, each sorted record in page 55056 between
the first and the last record stores a key value between 12 and
31 inthe first column and the records are arranged in a manner
to store key values in an ascending order from 12 to 31.

In addition to the above, the pages within Level N are
sorted according to a desired order. In various embodiments,
pages within a level may be sorted in a manner that reflects the
order in which entries within a page are sorted. For example,
pages within a level may be sorted according to key values in
ascending order. As the first key value in page 5505 is greater
than the last key value in page 550a, page 5505 follows page
550aq in the sort order. Page 550g would then include entries
whose key values are greater than those included in pages
550a-550f (not shown). In this manner, all entries within a
level are sorted according to a common scheme. The entries
are simply subdivided into page, or other, size units. As may
be appreciated, other sorting schemes may be used as desired.

Referring now to FIG. 8, a generalized block diagram of
one embodiment of a secondary index 560 used to access a
fingerprint table is shown. As described earlier, data compo-
nent 502 may be received by a fingerprint algorithm 504,
which produces a fingerprint 506. The fingerprint 506 is used
to access an index for a fingerprint/deduplication table. In
some embodiments, the deduplication table discussed above
may be too large (or larger than desired) to store in RAM 172
or memory medium 130. Therefore, a secondary index 320
may be cached for at least a portion of the primary index
instead of the corresponding portion of the primary index
310. The secondary index 560 may provide a more coarse
level of granularity of location identification of data stored in
the storage devices 176a-176m. Therefore, the secondary
index 560 may be smaller than the portion of the table 520 to
which it corresponds. Accordingly, the secondary index 560
may be stored in RAM 172 or in memory medium 130.

In one embodiment, the secondary index 560 is divided
into partitions, such as partitions 562a-562b. Additionally,
the secondary index may be organized according to level with
the more recent levels appearing first. In one embodiment,
older levels have lower numbers and younger levels have

10

15

20

25

30

35

40

45

50

55

60

65

26

higher numbers (e.g., a level ID may be incremented with
each new level). Each entry of the secondary index 560 may
identify a range of key values. For example, the first entry
shown in the example may identify a range ofkey values from
0to 12 in level 22. These key values may correspond to key
values associated with a first record and a last record within a
given page of the a fingerprint table 520. In other words, the
entry in the secondary index may simply store an identifica-
tion of key 0 and an identification of key 12 to indicate the
corresponding page includes entries within that range. Since
remappings are maintained in the levels within the mapping
table, a range of'key values may correspond to multiple pages
and associated levels. Various fields within the secondary
index 560 may store this information in a manner similar to
that shown in FIG. 7. Each entry may store one or more
corresponding unique virtual page identifiers (IDs) and asso-
ciated level IDs corresponding to the range of key values.
Each entry may also store corresponding status information
such as validity information. The list of maintained page IDs
and associated level IDs may indicate where a given query
key value might be stored, but not confirm that the key value
is present in that page and level. The secondary index 560 is
smaller than the primary index 510, but also has a coarse-level
of granularity of location identification of data stored in the
storage devices 176a-176m. The secondary index 560 may be
sufficiently small to store in RAM 172 or in memory medium
130.

When the secondary index 560 is accessed with a query key
value 506, it may convey one or more corresponding page [Ds
and associated level IDs. These results are then used to access
and retrieve portions of the stored primary index. The one or
more identified pages may then be searched with the query
key value to find a physical pointer value. In one embodiment,
the level IDs may be used to determine a youngest level of the
identified one or more levels that also store the query key
value 506. A record within a corresponding page may then be
retrieved and a physical pointer value may be read for pro-
cessing a storage access request. In the illustrated example,
the query key value 27 is within the range of keys 16 to 31.
The page IDs and level IDs stored in the corresponding entry
are conveyed with the query key value to the fingerprint table.
Corresponding pages within persistent storage may be
accessed if the query key value is not found in a higher level
fingerprint table.

Turning now to FIG. 9, a generalized block diagram of
another embodiment of a fingerprint table 520 and an index
used to access the table is shown. Circuit and logic portions
corresponding to those of FIG. 8 are numbered identically. A
copy of one or more of the primary index portions 590a-590;
may be included in may be stored in one or more levels of the
storage hierarchy (e.g., cached copies). In the embodiment
shown, the information in primary indexes 590a-590/ may be
stored with the pages of mappings in storage devices 176a-
176m. Also shown is a secondary index 592 which may be
used to access a primary index, such as primary index 590i
shown in the diagram. Similarly, accessing and updating the
mapping table 340 may occur as described earlier.

As shown, Fingerprint table 520 comprises multiple levels,
such as Level “1” to Level “N™. In the illustrated example,
each of'the levels includes multiple pages. Level “N” is shown
to include pages “0” to “D”, Level N-1 includes pages “E” to
“G”, and so forth. Again, the levels within the table 510 may
be sorted by time. Level “N” may be younger than Level
“N-1"and so forth. Fingerprint table 520 may be accessed by
at least a key value. In the illustrated example, fingerprint
table 520 is accessed by a key value “27” and a page ID “32”.
For example, in one embodiment, a level ID “8” may be used

US 9,069,786 B2

27

to identify a particular level (or “subtable”) of the fingerprint
table 520 to search. Having identified the desired subtable, the
page ID may then be used to identify the desired page within
the subtable. Finally, the key may be used to identify the
desired entry within the desired page.

As discussed above, an access to a cached portion of the
index 570 may result in multiple hits. In one embodiment, the
results of these multiple hits are provided to merge logic 580
which identifies which hit is used to access the fingerprint
table 520. Merge logic 580 may represent hardware and/or
software which is included within a storage controller. In one
embodiment, merge logic 580 is configured to identify a hit
which corresponds to a most recent (newest) mapping. Such
an identification could be based upon an identification of a
corresponding level for an entry, or otherwise. In the example
shown, a query corresponding to level 8, page 32, key 27 is
received. Responsive to the query, page 32 of level 8 is
accessed. If the key 27 is found within page 32 (a hit), then a
corresponding result is returned (e.g., pointer xF3209B24 in
the example shown). If the key 27 is not found within page 32,
then a miss indication is returned. This physical pointer value
may be output from the fingerprint table 520 to service a
lookup request corresponding to the key value “27”.

In addition to the above, in various embodiments the stor-
age system may simultaneously support multiple versions of
the data organization, storage schemes, and so on. For
example, as the system hardware and software evolve, new
features may be incorporated or otherwise provided. Data,
indexes, and mappings (for example) which are newer may
take advantage of these new features. In the example of FI1G.
9, new level N may correspond to one version of the system,
while older level N-1 may correspond to a prior version. In
order to accommodate these different versions, metadata may
be stored in association with each of the levels which indi-
cates which version, which features, compression schemes,
and so on, are used by that level. This metadata could be
stored as part of the index, the pages themselves, or both.
When accesses are made, this metadata then indicates how
the data is to be handled properly. Additionally, new schemes
and features can be applied dynamically without the need to
quiesce the system. In this manner, upgrading of the system is
more flexible and a rebuild of older data to reflect newer
schemes and approaches is not necessary.

Referring now to FIG. 10, one embodiment of a method
600 for supporting multiple fingerprint tables is shown. The
components embodied in the network architecture 100, sys-
tem 400, deduplication table 510 and fingerprint table(s) 520
described above may generally operate in accordance with
method 600. For purposes of discussion, the steps in this
embodiment are shown in sequential order. However, some
steps may occur in a different order than shown, some steps
may be performed concurrently, some steps may be combined
with other steps, and some steps may be absent in another
embodiment.

In block 602, a number N (where N is an integer) of
fingerprint tables are determined to be supported and store
values, such as fingerprint values, corresponding to stored
data components. Each of the N fingerprint tables may have
an associated probability for corresponding data components
to be deduplicated. One or more of the N fingerprint tables
may be stored on a separate storage medium from the other
fingerprint tables. One or more ofthe N fingerprint tables with
the higher associated probabilities of deduplication may be
stored in a higher level of a memory hierarchy than the
remainder of the N fingerprint tables. For example, one or
more of the N fingerprint tables may be stored in RAM 172,
whereas the remainder of the N fingerprint tables may be

10

15

20

25

30

35

40

45

50

55

60

65

28

stored in persistent storage in storage devices 176a-176m. In
some embodiments, copies of one or more of the N fingerprint
tables may be stored in a higher level of the storage hierarchy.
Therefore, there may be two copies of the one or more N
fingerprint tables on separate storage media.

Inblock 606, one or more events are identified for changing
(or reevaluating) a storage strategy or arrangement for entries
within the N fingerprint tables. Examples of such events may
include a garbage collection operation, a pruning/trimming
operation, a secure erase operation, a reconstruct read opera-
tion, a given stage in a read/write pipeline for a received
read/write request, a received batch operation that accesses
physical locations within persistent storage, a received batch
operation that transforms or relocates data components
within the persistent storage.

In block 608, one or more attributes corresponding to data
components stored in the persistent storage are identified for
storage. The attributes may be used to change a storage strat-
egy or arrangement for entries within the N fingerprint tables.
Examples of such attributes include at least those discussed
above in relation to FIG. 4. In block 610, one or more of the
stored attributes may be updated as data components are aged
or accessed. In one embodiment, a given period of time and
each data storage access may be included as an event with the
events described regarding block 606. If one of the identified
events occurs (decision block 612), then in block 614 one or
more of the attributes corresponding to one or more stored
data components are read for inspection. In block 616, based
on the attributes that are read, one or more entries within the
N fingerprint tables may be moved from one fingerprint table
to another. Additionally, entries may be reordered within a
given fingerprint table based on their corresponding
attributes. For example, the entries may be sorted by one or
more stored fingerprint values for ease of lookup. One or
more entries may be promoted from a lower-level fingerprint
table to ahigher-level fingerprint table, wherein entries within
the higher-level fingerprint table correspond to stored data
components that have a higher probability of being dedupli-
cated based on their attributes.

In addition to the above, one or more entries within the N
fingerprint tables may be evicted from the fingerprint table
520 altogether. This eviction of one or more entries may occur
when a determination is made based on associated attributes
that the one or more entries correspond to stored data com-
ponents with a low probability of being deduplicated. In
addition, based on associated attributes, entries within the N
fingerprint tables may be evicted in order to prevent dedupli-
cation among data components with a large number of refer-
ences, to remove entries that cause false matches, or colli-
sions, during a deduplication operation, and to remove entries
that no longer have a valid physical address for the data
component to which they refer.

As described earlier, for each entry that is evicted, in one
embodiment, an indication of the eviction may be written to a
corresponding physical location within one of the data stor-
age arrays 120a-12054. In another embodiment, an indication
of the eviction may be written in an associated entry of
another data structure. A stored indication may allow for
reevaluation at a later time of a given evicted data component.
The associated attributes may be read and used to determine
whether the given evicted data component may now have a
probability of being deduplicated above a given threshold. If
it is determined the given evicted data component has a prob-
ability of being deduplicated above a given threshold, then a
corresponding entry may be allocated in one of the N finger-
print tables.

US 9,069,786 B2

29

Referring now to FIG. 11, one embodiment of a method
800 for eviction from a deduplication table is shown. In block
802, one or more conditions are identified for evicting an
entry from a deduplication table. Here, eviction refers to
removing information stored in a given entry from the entire
deduplication table. If a deduplication table includes multiple
fingerprint tables, such as tables 520-540, information stored
within a given entry may be removed and no longer be stored
in any of the fingerprint tables. In various embodiments, data
that is deemed to have a relatively low probability of being
deduplicated may have its entry removed from the dedupli-
cationtable(s). This eviction may in turn reduce the size of the
deduplication table and reduce an amount of effort required to
maintain the table.

In the example shown, the identified conditions for use in
determining eviction may include one or more of a size of the
deduplication table reaching a given threshold, a given data
component has a predicted probability of being deduplicated
that falls below a given threshold, a given data component has
a history of being deduplicated that falls below a given thresh-
old, a given data component with an associated large number
of references is identified as being removed from a dedupli-
cation operation, a given data component reaches a given
threshold for a number of false matches (collisions), and a
given data component does not have a valid physical address.
One or more attributes, such as the attributes discussed above
may be used to determine whether eviction may occur and to
identify one or more entries within a deduplication table for
eviction. In various embodiments, eviction may also occur
during garbage collection operations.

If conditions are satisfied for evicting a given entry in a
deduplication table (decision block 804), then a correspond-
ing data component may be marked as being removed from
the table (block 806). In one embodiment, an indication of the
eviction may be written to a corresponding physical location
within one of the data storage arrays 120a-1205, and the given
entry in the deduplication table may be deallocated (block
808). A stored indication may allow for reevaluation at a later
time of a given evicted data component.

Referring now to FIG. 12, one embodiment of a method
900 for inserting an entry into a deduplication table is shown.
Inblock 902, one or more conditions are identified for review-
ing a data component which does not currently have an entry
in the deduplication table. In one embodiment, one condition
for performing such a review may be initiation of a garbage
collection operation. Other examples of conditions may
include the occurrence of events identified in block 206 in
method 200 and the conditions described in block 616 of
method 600. The timing of such a review may be set in a
manner to minimize or otherwise reduce the impact on other
system operations.

If conditions are satisfied for reviewing a data component
(decision block 904), then corresponding attributes for the
given data component may be read and inspected (block 906).
For example, one or more attributes such as those discussed
above may be used to determine whether insertion may occur.
In various embodiments, metadata within the system indi-
cates whether a corresponding data component does or does
not have a corresponding entry in the deduplication table. A
given data component/entry may qualify for insertion in the
deduplication table when one or more conditions for its exclu-
sion are no longer valid, such as the conditions described
above regarding block 802 of method 800. The attributes of a
corresponding data component may change over time and
allow the data component to have an associated entry in the
deduplication table again.

10

15

20

25

30

35

40

45

50

55

60

65

30

If a given evicted entry qualifies to be reinserted in the
deduplication table (decision block 908), then an entry in the
deduplication table is allocated for a corresponding data com-
ponent (block 910) and any markings that indicate the data
component does not have an entry in the deduplication table
may be removed or invalidated.

Referring now to FIG. 13, a generalized block diagram
illustrating one embodiment of a system 1200 for maintaining
reverse address mappings using a link table 1210 is shown. As
described above, virtual-to-physical mapping information
may be stored in mapping table 620. In addition, address-
mapping information may be stored in each page of data
within each of the storage devices 176a-176m. Each of the
data storage arrays 120a-1205 supports multiple virtual
addresses in requests from each of the client computer sys-
tems 110a-110c¢ referencing a same, single physical address.
For example, a first virtual address corresponding to client
110a and a second virtual address corresponding to client
1105 may reference a same data component or a same data
block identified by a same given physical address. In this
example, the first virtual address may have a value of “VX”.
The second virtual address may have a value of “VY”. The
same given physical address may have a value of “PA”. These
values are arbitrary and chosen to simplify the illustrated
example. The mapping table 620 may store mapping infor-
mation such as “VX-to-PA” and “VY-to-PA”.

Continuing with the above example, over time, the first
virtual address, “VX”, may later be included in a write request
from client 1104 with modified data. The new modified data
may be written to one or more of the storage devices 176a-
176m. The new information for the physical block may be
stored in a physical location identified by a new physical
address different from the given physical address. For
example, the new physical address may have a value “PB”,
which is different from the value “PA” of the given physical
address. A new virtual-to-physical mapping may be stored in
amappingtable 620, such as “VX-to-PB”. The given physical
address, “PA”, still has a link to one virtual address, which is
the second virtual address corresponding to client 1105, or
“VY-to-PA” stored in the table 620. Subsequently, the second
virtual address, “VY”, may later be included in a write request
from client 1105 with modified data. Again, the new modified
data may be written to one or more of the storage devices
176a-176m. The new information for the physical block may
be stored in a physical location identified by a new physical
address different from the given physical address. For
example, the new physical address may have a value “PC”,
which is different from the value “PA” of the given physical
address. A new virtual-to-physical mapping may be stored in
a corresponding table 620, such as “VY-to-PC”. The given
physical address, “PA”, now has no links to it. A garbage
collection operation may deallocate the physical block cor-
responding to the given physical address “PA” due to a count
of'zero currently valid links and/or other corresponding status
information.

A problem may occur during garbage collection if inline
deduplication causes no update of mapping information. For
example, when a write request from client 100a to virtual
address VX occurs, no matching fingerprint value 506 may be
found in the fingerprint table 520 during an inline deduplica-
tion operation. Consequently, mapping may be stored in the
mapping table 620, such as “VX-to-PA”, and a physical data
block may be scheduled to be written to the physical address
“PA”. In addition, the mapping information “VX-to-PA” may
be written with the data in the physical location identified by
physical address “PA”. Alternatively, the mapping informa-
tion may be stored in a corresponding log in a storage device,

US 9,069,786 B2

31

wherein the log corresponds to multiple physical locations
such as the location identified by the physical address A. In
one embodiment, at this time, an entry may be registered in
the deduplication table 510 corresponding to this write
request. In another embodiment, an entry may be registered in
the deduplication table 510 corresponding to this write
request during a post-process deduplication operation.
Regardless of when an entry is registered in the deduplication
table 510, a corresponding entry may exist in the deduplica-
tion table 510 when a write request is received from client
1105 to virtual address VY.

When the write request from client 1005 to virtual address
“VY” is received, a matching fingerprint value 506 may be
found in the deduplication table 510 corresponding to physi-
cal address PA and a match ofthe data verified. In such a case,
a mapping may be stored in the table 620, such as “VY-to-
PA”. As a write of the data is not performed, the mapping
information “VY-to-PA” is not written with the data in the
physical location identified by physical address “PA”. Sub-
sequently, a later write request from client 1004 to virtual
address “VX” may occur with new modified data. No match-
ing fingerprint value 506 may be found in the deduplication
table 510 during an inline deduplication operation, and a
corresponding mapping stored in the table 620, such as “VX-
to-PB”. In this case, the mapping information “VX-to-PB”
may be written with the data in the physical location identified
by the physical address “PB”.

When the garbage collector is executed, the application
may inspect both the physical location identified by the physi-
cal address “PA” and the table 620. The garbage collector
may find the mapping information, “VX-to-PA”, stored with
(or otherwise in association with) the corresponding page
identified by the physical address “PA”. However, no valid
corresponding entry in the table 620 storing the same map-
ping information “VX-to-PA” is found. In addition, no other
valid links to the physical address “PA” may be found,
although virtual address “VY” is referencing physical
address “PA”. Therefore, a count of links to the physical
address “PA” is erroneously determined to be zero. The gar-
bage collector may then deallocate the physical location iden-
tified by the physical address “PA”. Consequently, the link
corresponding to the mapping “VY-to-PA” is broken and data
corruption may have occurred.

In order to avoid the above problem without scheduling a
data write request to the storage devices 176a-176m, a link
table 1210 may be used. Although scheduling a write request
to update the mapping information from (“VX-to-PA”) to
(“VX-t0-PA”, “VY-to-PA”) stored in the physical location
identified by the physical address “PA” may prevent broken
links, the benefit of the inline deduplication operation would
be reduced and write amplification of SSDs may be increased.
Therefore, in order to address at least these issues, the link
table 1210 may be utilized to hold reverse mapping informa-
tion. The link table 1210 may comprise a plurality of entries
12204-1220g. Each of the entries 1220a-1220g may include
aphysical index 1224 that identifies a physical location in the
storage devices 176a-176m. In addition, one or more virtual
indexes 12264-1226; may be included to provide reverse
mapping information. The status information 1228 may indi-
cate whether a corresponding entry stores one or more valid
reverse mappings.

In one embodiment, the link table 1210 has an entry allo-
cated or updated when an inline deduplication operation
determines a duplicate copy exists in storage for a corre-
sponding data component 502. A corresponding physical
index 537 found during the inline deduplication operation
may be used to update the link table 1210. Referring to the

10

15

20

25

30

35

40

45

50

55

60

65

32

above example, the link table 1210 may be updated with the
reverse mapping information “PA-to-VY” during processing
of'the write request from client 1105 to virtual address “VY™.
When the garbage collector is executed, it may inspect both
the physical location identified by the physical address “PA”,
the mapping table 620 and the link table 1210. The garbage
collector may find the mapping information, “VX-to-PA”,
stored in the corresponding page identified by the physical
address “PA”. A valid corresponding entry in the table 620
storing the same mapping information, “VX-to-PA”, may not
be found. However, the garbage collector may access the link
table 1210 with the physical address “PA” and find a valid
entry with the reverse mapping information “PA-to-VY”.
Therefore, a count of links to the physical address “PA” is
one, or nonzero. Accordingly, the garbage collector does not
deallocate the physical location identified by the physical
address “PA” and the problem discussed above is avoided. In
another embodiment, the data corresponding to “PA” is
stored in one location and the mapping information “VX to
PA” and “VY to PA” stored in another location. In yet another
embodiment, the data corresponding to “PA” is stored in one
location and the mappings “VX to PA” and “VY to PA” are
stored in a link table, but not adjacent to one another. Instead,
they may be stored in a table with a structure similar to that
described in FIG. 9, with the key for both mapping entries
being the physical address “PA” (or based at least in part on
the “PA”). For example, in such a table, “VX to PA” may be
stored in Level N-2 and “VY to PA” stored in Level N. A
lookup of “PA” in the table would then return both mappings.

In addition to the above, during garbage collection the
physical location identified by the physical address “PA” may
be updated with the mapping information “VY- to PA” due to
the valid entry in the link table 1210. Given such an update,
the entry in the link table 1210 may be deallocated. If the table
620 is ever lost, the mapping information stored in the physi-
cal locations in the storage devices 176a-176m and the
reverse mapping information stored in the link table 1210
may be used to rebuild the table 620. In one embodiment, the
deduplication table 510, or a portion of the table 510, may be
organized in a same manner as that of the mapping table 620.
Additionally, the link table 1210 may also be organized in a
same manner as the mapping table 620.

As described above, when an inline deduplication opera-
tion determines a duplicate copy of data is stored in the
system, corresponding mapping information may be stored in
each of the table 620 and the link table 1210 with no write of
the data to storage. These steps coordinate with garbage col-
lection that frees physical locations in the persistent storage.
The coordination may be relatively coarse since freeing
physical locations may be performed later and batched sepa-
rately from garbage collection migrating physical blocks
within a corresponding one of the storage devices 176a-
176m. Since migration may occur prior to deallocation of
physical locations during garbage collection, when a physical
block is moved a new physical location for data may have
stored mapping information updated with its own physical
address and updates stored in the mapping table 620. Both
corresponding log areas and page header information may be
updated. Afterward, the table 620 may be updated with the
new physical addresses. Following this, the deduplication
table 510 and then the link table 1210 may be updated with the
new physical addresses. This update removes links to the old
physical addresses.

If the deduplication table 510 or the link table 1210 con-
tains old references, then the corresponding physical loca-
tions may be cleaned once more before it is freed. The dedu-
plication table 510 may not be as compressible as the table

US 9,069,786 B2

33

620, since the fingerprint value and physical pointer pairs
may be random or more random than the entries in the table
620. Further, the deduplication table 510 may be less cache-
able, since the fingerprint values may be random and table
510 is indexed by fingerprint values. Regarding the table 620,
entries corresponding to idle data, such as in idle volumes,
may be kept out of caches. Such factors result in more read
operations for a deduplication operation. Therefore, the mul-
tiple fingerprint tables 520-540 are used and allow one or
more smaller tables to be cached. In one embodiment, the
tables corresponding to data components with a higher prob-
ability being deduplicated may be accessed during inline
deduplication. The other tables may be accessed during post-
process deduplication, such as during garbage collection.

FIG. 14 illustrates one embodiment of a portion of a gar-
bage collection process that may, for example, be used in a
storage system that supports deduplication. In the example
shown, an entry in the link table is read (block 1402) and a
virtual address read from the entry (block 1404). Using at
least a portion of the virtual address, an access of the mapping
table is performed (block 1406) and a determination made as
to whether there exists a valid address mapping for the virtual
address (decision block 4108). If there is a valid mapping,
then a new link table entry is updated to include the mapping
(block 1406), and a determination made as to whether there
are further virtual addresses to check in the current link table
entry (decision block 1408). If so, then the process continues
with block 1410. If there is no valid mapping for the virtual
address (decision block 1408), the process continues with
block 1412. Once there are no further virtual addresses to
check for the current link table entry (decision block 1412),
then a determination is made as to whether the new entry is
empty (i.e., no valid mappings have been found that corre-
spond to the current link table entry (decision block 1414). If
the new entry is empty, then the currently allocated block
corresponding to the current link table entry may be
reclaimed (block 1416). Otherwise, the new entry is written to
the link table (block 1420). If there are more link table entries
to examine (decision block 1418), then the process may pro-
ceed with block 1402. In addition to reclaiming storage, this
process may serve to consolidate link table mapping entries
into fewer entries.

It is noted that the above-described embodiments may
comprise software. In such an embodiment, the program
instructions that implement the methods and/or mechanisms
may be conveyed or stored on a computer readable medium.
Numerous types of media which are configured to store pro-
gram instructions are available and include hard disks, floppy
disks, CD-ROM, DVD, flash memory, Programmable ROMs
(PROM), random access memory (RAM), and various other
forms of volatile or non-volatile storage.

In various embodiments, one or more portions of the meth-
ods and mechanisms described herein may form part of a
cloud-computing environment. In such embodiments,
resources may be provided over the Internet as services
according to one or more various models. Such models may
include Infrastructure as a Service (laaS), Platform as a Ser-
vice (PaaS), and Software as a Service (SaaS). In laaS, com-
puter infrastructure is delivered as a service. In such a case,
the computing equipment is generally owned and operated by
the service provider. In the PaaS model, software tools and
underlying equipment used by developers to develop soft-
ware solutions may be provided as a service and hosted by the
service provider. SaaS typically includes a service provider
licensing software as a service on demand. The service pro-
vider may host the software, or may deploy the software to a

25

30

40

45

60

34

customer for a given period of time. Numerous combinations
of'the above models are possible and are contemplated.

Although the embodiments above have been described in
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the follow-
ing claims be interpreted to embrace all such variations and
modifications.

What is claimed is:

1. A computer system comprising:

a data storage medium;

a first fingerprint table comprising a first plurality of

entries; and

a second fingerprint table comprising a second plurality of

entries;

wherein each of the first plurality of entries and each of the

second plurality of entries is configured to store a fin-
gerprint corresponding to data stored in the data storage
medium; and

a data storage controller configured to:

generate a first fingerprint corresponding to a data com-
ponent of a received write operation;

access the first fingerprint table; and

write the data component to the data storage medium
without accessing the second fingerprint table, in
response to determining the first fingerprint table does
not include an entry that corresponds to the first fin-
gerprint.

2. The system as recited in claim 1, wherein the second
fingerprint table comprises a fingerprint for at least one dedu-
plicated data component not included in the first fingerprint
table.

3. The system as recited in claim 1, wherein a search of the
second fingerprint table for the first fingerprint is deferred to
a later time subsequent to the write data being stored in the
data storage medium.

4. The system as recited in claim 1, where the data storage
controller is configured to:

store write data corresponding to the write operation in the

data storage medium; and

search the second fingerprint table for the first fingerprint

corresponding to the write data during a garbage collec-
tion operation.

5. The system as recited in claim 1, wherein the first fin-
gerprint table and the second fingerprint table are stored
across a hierarchy of different storage media.

6. The system as recited in claim 1, wherein in response to
detecting a deduplication operation corresponding to a first
data component stored in the data storage medium, the data
storage controller is configured to perform a number of
accesses to the first fingerprint table and the second finger-
print table as part of the deduplication operation, wherein the
number of said accesses performed is based at least in part on
an age of the first data component.

7. The system as recited in claim 6, wherein as the first data
component grows older said number of accesses performed
during a deduplication operation increases.

8. A method comprising:

maintaining a first fingerprint table comprising a first plu-

rality of entries; and

maintaining a second fingerprint table comprising a second

plurality of entries;

wherein each of the first plurality of entries and each of the

second plurality of entries is configured to store a fin-
gerprint corresponding to data stored in a data storage
medium,;

US 9,069,786 B2

35

generating a first fingerprint corresponding to a data com-

ponent of a received write operation;

accessing the first fingerprint table; and

writing the data component to a data storage medium with-

out accessing the second fingerprint table; and

in response to determining the first fingerprint table does

not include an entry that corresponds to the first finger-
print first fingerprint table.

9. The method as recited in claim 8, wherein the second
fingerprint table comprises a fingerprint for at least one dedu-
plicated data component not included in the first fingerprint
table.

10. The method as recited in claim 8, further comprising
deferring a search of the second fingerprint table for the first
fingerprint subsequent to the write data being stored in the
data storage medium.

11. The method as recited in claim 8, further comprising
caching a copy of the first fingerprint table in memory.

12. The method as recited in claim 8, further comprising
storing the first fingerprint table and the second fingerprint
table across a hierarchy of different storage media.

13. The method as recited in claim 8, wherein in response
to detecting a deduplication operation corresponding to a first
data component stored in the data storage medium, the
method comprises performing one or more accesses to the
first fingerprint table and the second fingerprint table as part
of the deduplication operation, wherein the number of said
accesses performed is based at least in part on an age of the
first data component.

14. The method as recited in claim 10, further comprising
searching the second fingerprint table for a fingerprint corre-
sponding to the write data during a garbage collection opera-
tion.

15. A non-transitory computer readable storage medium
comprising program instructions, wherein said program
instructions are executable to:

maintain a first fingerprint table comprising a first plurality

of entries; and

maintain a second fingerprint table comprising a second

plurality of entries;

15

20

25

30

35

36

wherein each of the first plurality of entries and each of the
second plurality of entries is configured to store a fin-
gerprint corresponding to data stored in a data storage
medium,;

generating a fingerprint corresponding to a data component

of a received write operation;

access the first fingerprint table; and

write the data component to a data storage medium without

accessing the second fingerprint table, in response to
determining the first fingerprint table does not include an
entry that corresponds to the first fingerprint.

16. The non-transitory computer readable storage medium
as recited in claim 15, wherein the second fingerprint table
comprises a fingerprint for at least one deduplicated data
component not included in the first fingerprint table.

17. The non-transitory computer readable storage medium
as recited in claim 15, wherein the program instructions are
further executable to defer a search of the second fingerprint
table for the first fingerprint subsequent to the write data being
stored in the data storage medium.

18. The non-transitory computer readable storage medium
as recited in claim 15, wherein the program instructions are
further executable to cache a copy of the first fingerprint table
in memory.

19. The non-transitory computer readable storage medium
as recited in claim 17, wherein the program instructions are
further executable to search the second fingerprint table for a
fingerprint corresponding to the write data during a garbage
collection operation.

20. The non-transitory computer readable storage medium
as recited in claim 15, wherein in response to detecting a
deduplication operation corresponding to a first data compo-
nent stored in the data storage medium, the program instruc-
tions are executable to perform a number of accesses to the
first fingerprint table and the second fingerprint table as part
of the deduplication operation, wherein the number of said
accesses performed is based at least in part on an age of the
first data component.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,069,786 B2 Page 1 of 1
APPLICATION NO. : 14/083152

DATED : June 30, 2015

INVENTORC(S) : John Colgrove et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the claims,

Claim number 8, column 35, line 6, which reads, “in response to determining the first fingerprint table
does not include an entry that corresponds to the first fingerpr nt first fingerprint table.” is corrected
here to read,

“in response to determining the first fingerprint table does not include an entry that corresponds to the
first fingerprint.”

Signed and Sealed this
Twelfth Day of January, 2016

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

